The Astronomer’s Theory of Everything

David W. Hogg

Center for Cosmology and Particle Physics, New York University

and

Max-Planck-Institut für Astronomie, Heidelberg

2013 March 5
XDQSO target selection (Bovy et al., 1011.6392)
lots of bad data is equal to a bit of good data
Software is going to be much more productive, per dollar, than anything else in astrophysics!
the new reality

- all our goals are getting substantially more ambitious every ten years
- funding is flat
- the era of under-budgeting and over-designing (and getting away with it) is over
- many observational programs will lead to upper limits or bare detections
 - example: *JWST* will take low s/n spectra of a *couple* of Earth-like exoplanets (in the most optimistic scenario) over its entire mission lifetime.
- existing (and aging) data will become far more valuable
 - example: The sky has been imaged thousands of times already in many bands; these data have never seriously been assembled and analyzed coherently.
we need new tools

- How do we move all of the information from all of the data (ever taken) to the quantities of interest?
- How do we get high s/n information about what we want when every individual datum is very noisy?
- It’s all about tools.
conclusions

- software, software, software, and applied math
- lots of bad data is equal to a bit of good data
- modeling beats supervised classification
- point estimates are bad, models are good
- hierarchical modeling will require MCMC
- we can find populations, no member of which is individually detectable
modeling beats supervised classification
XDQSO target selection (Bovy et al., 1011.6392)
what’s wrong with supervised classification?

- support vector machines, boosting, deep learning
- these are all awesome
- they require that test data have the same statistical and error properties as training data
 - never true!
- they require that all features be measured for all data points
 - never true!
 - (If you know enough about your data to fix this problem, then just write down a likelihood!)
point estimates are bad, models are good
faint proper motions (Lang et al. 0808.4004)

- If we had only a catalog, we would have failed.
- If we had only a coadd, we would have failed.
what’s wrong with LSST and PanSTARRS?

- reducing data with point estimates
- building catalogs from “co-adds” with point estimates
- catalog matching
- All of these throw away information. Does it matter?
 - Lang and I are betting it does: theTractor.org
The *Tractor* (Lang *et al.*)
The *Tractor* (Lang *et al.*
heirarchical modeling will require MCMC
the Exoplanet Theory of Everything

- different techniques find different planets
 - radial velocity, transit, direct detection, astrometry, microlensing
- completeness or selection functions are smooth functions of exoplanet and host-star properties
- most observations show no clearly detectable planet
- Earth-like planets are in a “bitter spot” for all observational techniques
- how do we take the (literally) billions of data points and obtain the best possible picture of the full exoplanet population?
 - distributions in orbital and planetary (composition, size) parameters
 - distributions for multiplicity and “architecture”
 - all as a function of host-star properties
 - plus all the individual systems measured as well as possible
observations
planets
r
$f_\theta(t_n)$
$f_{\text{obs}; n}$
$t_0, a, e, \varpi, \delta i, M_p$
$R_*, f_*, \{I_k\}$
i
δ^2
t_n
σ_n^2
$t_{\exp n}$
M_*
Generated using Bart v0.0.2-2f9b755

- Short cadence
- Long cadence

Time [Hours Since Transit]
Bart (Foreman-Mackey et al., forthcoming)

- built on very successful emcee package (Foreman-Mackey et al., 1202.3665)
- designed for exoplanet measurement and discovery of false positives
- very easy to use

```python
import bart

# Initialize a planet.
planet = bart.Planet(r=0.01, a=21.3, t0=3.85)
planet.parameters += [bart.parameters.Parameter(r"$r$", "r"),
                      bart.parameters.LogParameter(r"$a$", "a")]

# Initialize the star.
ldp = bart.kepler.fiducial_ldp(teff=6438, logg=4.28, feh=0.0)
star = bart.Star(mass=planet.get_mstar(12.4138), ldp=ldp)

# Set up the system.
system = bart.PlanetarySystem(star)
system.parameters.append(bart.parameters.CosParameter(r"$i$", "iobs"))
system.add_planet(planet)

# Add data and fit.
system.add_dataset(bart.KeplerDataset("path/to/kepler/data/lc.fits"))
system.fit(2000)
```
exoplanets around white dwarfs (Schiminovich, Lang, Hogg)
the undetectable can be measured
ersatz 007

radial velocity (kms⁻¹)

time (d)
ersatz stacked and binned
family of priors $p(\omega_n|\alpha)$, parameterized by some α

\[
p(\{D_n\}_{n=1}^{N} | \alpha) = \prod_{n=1}^{N} \int d\omega_n p(D_n|\omega_n) p(\omega_n|\alpha) \quad (1)
\]

if you believe there can be a likelihood, then you believe there can be a **marginalized likelihood**

the fact that each internal $p(D_n|\omega_n)$ contains no clear peak (no clear object detection at all) doesn’t change anything!
hierarchical inference: What does it require?

- accurate likelihood functions
 - accurate noise models, or parameterized noise models
- fast inference
 - self-tuning MCMC (like *emcee*; Foreman-Mackey *et al.*, 1202.3665)
 - robustness to multimodal likelihood functions
- concept of self-calibration
 - calibration and noise parameters are not different from astrophysical parameters
- racks and racks of metal
 - (it can’t be done in “map–reduce” framework)
hierarchical inference: Why does it work?

- The marginalized likelihood is large when there is high prior probability in locations where there is high likelihood.
- When likelihoods are broad, the best prior is the most concentrated prior that is “consistent with” all individual-object likelihood functions.
- The operation is a **heteroskedastic deconvolution**.
 - (in modern parlance, a “deconvolution” is always the result of fitting a generative or forward model)
conclusions

- software, software, software, and applied math
- lots of bad data is equal to a bit of good data
- modeling beats supervised classification
- point estimates are bad, models are good
- hierarchical modeling will require MCMC
- we can find populations, no member of which is individually detectable