Mass-to-Light Ratios of Globular Clusters in M31 (and the Milky Way)

Jay Strader

(with Nelson Caldwell, Anil Seth, Matt Walker, Mario Mateo)

Why Measure M/L?

Mass-to-Light and [Fe/H]

(in the optical)

Mass-to-Light and [Fe/H]

(in the near-IR)

M31 GCs: Calculating M/L

high-res spectra + cluster structure

good imaging (pref HST)

M/L of 27 M31 GCs

M/L of I3I M3I GCs

K-band M/L

M/L with Mass

M/L with Mass

Ways to make M/L low

(i) Add stars with low M/L (RGB/AGB)

(ii) Remove stars with high M/L (low-mass dwarfs)

Bolometric Comparison

Flux matches!

Models cannot lack many red giants.

Mass Function and M/L

Inferred Mass Functions

note: MF ≠ IMF

Other MF results

Galactic GCs

Conclusions

Metal-rich globular clusters are unusually deficient in low-mass stars.

One explanation is a shallow IMF of the form: $dN/dM \propto M^{-0.8} - M^{-1.3}$

Non-standard dynamical evolution is another possibility.

