Finding the First Black Holes in the Milky Way's Backyard

Ryan O'Leary
University of California, Berkeley

Motivation

Supermassive black holes at high $z \gtrsim 7$

Black holes in the centers of galaxies

Black holes coevolve with host galaxy

Happy Accidents: Looking at the Smallest Clusters

Part I:
 Recoiled Star Clusters in the Milky Way
 O'Leary \& Loeb 2009,20I I

Segue 3 with KPNO

Part II:
Black Holes in Tidally Stripped Clusters in the Milky Way

O'Leary 201I (prep)

Recoiled Star Clústers in the Milky Way

- Hierarchical Galaxy Formation
- Properties and Evolution of Recoiling Star Clusters
- Search Strategies and Progress

O'Leary \& Loeb 2009,20II

Gravitational Wave Recoil

GWs

Schnittman \& Buonanno 2007

Gravitational Wave Recoil

GWs

Schnittman \& Buonanno 2007

Hierarchical Formation of the MilkyWay

Major Merger

MW Overdensity

Stolen from Via Lactea II

Hierarchical Formation of the MilkyWay

Major Merger

MW Overdensity
Stolen from Via Lactea II

Cluster of Stars

Number of stars in cluster

$$
\begin{aligned}
& N_{\mathrm{cl}} \approx \frac{2 M_{\bullet}}{m_{*}}\left(\frac{v_{k}}{\sigma_{*}}\right)^{2 \alpha-6} \\
& N_{\mathrm{cl}} \approx .04 \frac{M_{\bullet}}{m_{*}} \\
& \text { If cusp regeneration } \\
& \quad \text { is efficient }
\end{aligned}
$$

SMBH Fossils in our Backyard

SDSS Limit

Method:
Generate Monte-Carlo Merger tree models
(Parkinson et al. 2008)
Assume M- σ relation for galaxy $\mathrm{M}>10^{8} \mathrm{M}$ 。 (Tremaine et al. 2002)
Assign random kicks to the mergers
(Schnittman \& Buonanno 2007)

Distribution of the BHs roughly follows the dark matter halo.

Comparable Number of BHs to:
Volonteri \& Perna 2006
Libeskind et al. 2006
Islam et al. 2004

Long Term Evolution

N -body Simulations with BHint
Ulf Löckmann, Holger Baumgardt

Includes all dynamics
Accurate
Slow

Fokker-Planck Simulations

Add non-diffusive effects Many Approximations Very Fast

Cluster Decay

Perform N-body simulations of stars around a massive object (BHint).
Ulf Löckmann, Holger Baumgardt
40% of Stars Ejected for 10^{4} Msun
(40\% are Disrupted)
Break depends on M
$N_{\mathrm{cl}} \approx 800 M_{5}^{13 / 8} t_{10}^{-1 / 2}$

Tidal Disruptions

Perform N-body simulations of stars around a massive object (BHint).
Ulf Löckmann, Holger Baumgardt

40\% of Stars Ejected
40\% of Stars Disrupted

Results

Power-law slope from regular relaxation

Normalization from large angle scattering \& resonant relaxation/tidal disruption

Henon '69, Lin \& Tremaine ' 80
Robust Density Profile $\sim r^{-2.15}$

Cluster around a $10^{4} \mathrm{M}_{\circ}$ ejected BH

Zwicky's Catalog

Zwicky Cataloged Compact Galaxies

CATALOGUE

OF
SELECTED COMPACT GALAXIES
AND OF
POST-ERUPTIVE GALAXIES

Wal Sargent found 14 objects had $z=0$ (1970)

Visually Identified 12 as galaxies

Getting My Hands Dirty

A Search Through SDSS

Many Objects have sizes > 3"
Colors more like stars than galaxies (see Merritt et al. 2009 as well) and highly stochastic.

Different density profile than galaxies
Spectroscopic followup can confirm/ disprove candidates

Getting My Hands Dirty

Getting My Hands Dirty

Look for:
\checkmark larger than 3" to get rid of partially resolved binaries
Stellar Colors
Round Shape
Correct Light Profile Visually Inspect Objects

~ 100 candidates remain Can follow up with spectroscopy

Part I: SMBH Fossils in our Backyard

- Inevitable Process
- Cluster Rapidly Expands ~ Ipc
-Have high Keplerian dispersions, and not point like
-Extragalactic Tidal Disruptions are common
- Can also look in local group around M3I, M33, etc.
- Larger BHs may be found in the Virgo cluster as well
(Merritt et al. 2009)

Part II: Black Holes in tidally Stripped Clusters

Belokurov et al. 2010

Koposov I

Koposov et al. 2007

Segue 3

Fadely et al. 2011

Segue 3

Fadely et al. 2011

BHs in Tidally Stripped Clusters?

I) Originally $M_{\text {cluster }} \gg M_{\bullet}$
II) Cluster expands and is stripped of stars
III) When $M_{\text {cluster }} \approx M$ • the black hole protects the cluster from complete disruption.
IV) Should appear like recoiled clusters with more stars

Segue 3

Fadely et al. 2011

Segue 3 with Black Hole?

Fadely et al. 2011

Part II: BHs in Tidâly Disrupted Clusters

-Easy to find the dynamical center of cluster

- Only a few stars have anomalous velocity $\gtrsim 10 \mathrm{~km} \mathrm{~s}^{-1}$
-BHs protect clusters from further disruption
\rightarrow Increases chances smallest clusters have BHs
- Can take individual spectra of the most central
stars

Zwicky's Catalog

Genzel et al. $2003 \sim 20 " \times 20$ "

Getting Black Holes into the Milky Way Halo

Remnants of first massive stars

Islam et al. 2003,2004; Zhao \& SIIk 2005

Direct Collapse / Recoil
Bertone et al. 2005; Mapelli et al. 2006; Micic et al. 2006

Dynamical Ejection

Volonteri \& Perna 2005

Gravitational Wave Recoil

Madau \& Quataert 2004;Volonteri \& Perna 2005; Libeskind et al. 2006; Micic et al. 2006;
Holley-Bockelmann et al. 2008; O'Leary \& Loeb 2009,2010

Limits in the Halo

Bondi-Hoyle-Litttleton Accretion

Islam et al. 2004; Mii et al. 2005; Mapelli et al. 2006

Poor Constraints: < . I\% of baryons

Limits in the Halo

Dark Matter Annihilation

Bertone et al. 2005;

Assume BHs form in centers of dark matter halos

DM annihilates in cusp

Most 'Luminous' Events

$$
E_{\mathrm{GW}} \sim .1 M c^{2}
$$

$$
\Delta t \sim 10 \frac{G M}{c^{3}}
$$

$$
L_{\mathrm{GW}} \sim 10^{-2} \frac{c^{5}}{G}
$$

$$
\gtrsim 10^{57} \mathrm{erg} \mathrm{~s}^{-1}
$$

Cluster Expansion

Numerically Solve Time

 Dependent Fokker-Planck Equations with Loss Cone (Bahcall \& Wolf 1976/I977)Cluster Rapidly Expands
Relaxation Time \sim Time since ejection

Cluster around a $10^{5} \mathrm{M}_{\odot}$ ejected BH

Observations: Getting My Hands Dirty

Getting My Hands Dirty

Look for:
larger than 3" to get rid of
 partially resolved binaries

Getting My Hands Dirty

Look for:
larger than 3" to get rid of
 partially resolved binaries Stellar Colors

Getting My Hands Dirty

Look for:
\checkmark larger than 3 " to get rid of
 partially resolved binaries
Stellar Colors
Round Shape

Getting My Hands Dirty

Look for:
\checkmark larger than 3" to get rid of partially resolved binaries
Stellar Colors
Round Shape
Correct Light Profile

Cluster of Stars

Cluster of Stars

