Finding the First Black Holes in the Milky Way's Backyard

Ryan O'Leary University of California, Berkeley

Motivation

Supermassive black holes at high z $\gtrsim 7$

Black holes in the centers of galaxies

Black holes coevolve with host galaxy

Happy Accidents: Looking at the Smallest Clusters

Part I: Recoiled Star Clusters in the Milky Way O'Leary & Loeb 2009,2011

Part II: Black Holes in Tidally Stripped Clusters in the Milky Way O'Leary 2011 (prep)

Recoiled Star Clusters in the Milky Way

Hierarchical Galaxy Formation

 Properties and Evolution of Recoiling Star Clusters

Search Strategies and Progress

O'Leary & Loeb 2009,2011

Gravitational Wave Recoil

Gravitational Wave Recoil

Hierarchical Formation of the Milky Way

Major Merger

MW Overdensity Stolen from Via Lactea II

z=3.7

Hierarchical Formation of the Milky Way

Major Merger

MW Overdensity Stolen from Via Lactea II

z=3.7

Cluster of Stars

Number of stars in cluster

$$N_{\rm cl} \approx \frac{2M_{\bullet}}{m_*} \left(\frac{v_k}{\sigma_*}\right)^{2\alpha-6}$$

$$N_{\rm cl} \approx .04 \frac{M_{\bullet}}{m_*}$$

If cusp regeneration is efficient

CIERA Frontiers

SMBH Fossils in our Backyard

SDSS Limit

Method: Generate Monte-Carlo Merger tree models (Parkinson et al. 2008)

Assume M- σ relation for galaxy M > 10⁸M $_{\odot}$ (Tremaine et al. 2002)

Assign random kicks to the mergers (Schnittman & Buonanno 2007)

Distribution of the BHs roughly follows the dark matter halo.

Comparable Number of BHs to:

Volonteri & Perna 2006 Libeskind et al. 2006 Islam et al. 2004

Thursday, September 1, 2011

Long Term Evolution

N-body Simulations with BHint

Ulf Löckmann, Holger Baumgardt

Fokker-Planck Simulations

Includes all dynamics Accurate Slow Add non-diffusive effects Many Approximations Very Fast

CIERA Frontiers

Ryan O'Leary Thursday, September 1, 2011

Cluster Decay

Perform N-body simulations of stars around a massive object (BHint). Ulf Löckmann, Holger Baumgardt

40% of Stars Ejected for 10⁴ Msun (40% are Disrupted)

Break depends on M

Ryan O'Leary

Thursday, September 1, 2011

 $N_{\rm cl} \approx 800 M_5^{13/8} t_{10}^{-1/2}$

Tidal Disruptions

Perform N-body simulations of stars around a massive object (BHint). Ulf Löckmann, Holger Baumgardt

40% of Stars Ejected

40% of Stars Disrupted

CIERA Frontiers

Results

Power-law slope from regular relaxation

Normalization from large angle scattering & resonant relaxation/tidal disruption

Henon '69, Lin & Tremaine '80

Robust Density Profile ~r^{-2.15}

Cluster around a 10⁴ M_o ejected BH

Zwicky's Catalog

CATALOGUE OF SELECTED COMPACT GALAXIES AND OF POST-ERUPTIVE GALAXIES

F. ZWICKY

Zwicky Cataloged Compact Galaxies

Wal Sargent found 14 objects had z=0 (1970)

Visually Identified 12 as galaxies

Thursday, September 1, 2011

A Search Through SDSS

Many Objects have sizes > 3"

Colors more like stars than galaxies (see Merritt et al. 2009 as well) and highly stochastic.

Different density profile than galaxies

Spectroscopic followup can confirm/ disprove candidates

CIERA Frontiers

Thursday, September 1, 2011

CIERA Frontiers

SDSS DR 7

Look for:

larger than 3" to get rid of partially resolved binaries
Stellar Colors
Round Shape
Correct Light Profile
Visually Inspect Objects

~100 candidates remain Can follow up with spectroscopy

Part I: SMBH Fossils in our Backyard

- Inevitable Process
- Cluster Rapidly Expands ~ Ipc
- Have high Keplerian dispersions, and not point like
- Extragalactic Tidal Disruptions are common
- •Can also look in local group around M31, M33, etc.
- •Larger BHs may be found in the Virgo cluster as well (Merritt et al. 2009)

Part II: Black Holes in tidally Stripped Clusters

CIERA Frontiers

Thursday, September 1, 2011

Segue 3

CIERA Frontiers

Thursday, September 1, 2011

Segue 3

CIERA Frontiers

Thursday, September 1, 2011

BHs in Tidally Stripped Clusters?

1) Originally $M_{\text{cluster}} >> M_{\bullet}$

II) Cluster expands and is stripped of stars

III) When $M_{\text{cluster}} \approx M_{\bullet}$ the black hole protects the cluster from complete disruption.

IV) Should appear like recoiled clusters with more stars

Segue 3

Fadely et al. 2011

CIERA Frontiers

Segue 3 with Black Hole?

CIERA Frontiers

Fadely et al. 2011

Part II: BHs in Tidally Disrupted Clusters

- •Easy to find the dynamical center of cluster
- •Only a few stars have anomalous velocity $\gtrsim 10 \, \mathrm{km \, s}^{-1}$
- •BHs protect clusters from further disruption
 - \rightarrow Increases chances smallest clusters have BHs
- Can take individual spectra of the most central

stars

Zwicky's Catalog

CATALOGUE OF SELECTED COMPACT GALAXIES AND OF POST-ERUPTIVE GALAXIES

F. ZWICKY

"to the High Priests of American Astronomy and to their Sycophants"

"high pope of American Astronomy, one Henry Norris Russell"

"Hubble, Bade, and the sycophants among their assistants..."

"in 1964, A. Sandage ... attempted one of the most astounding feats of plagiarism"

CIERA Frontiers

Genzel et al. 2003 ~20"x20"

Getting Black Holes into the Milky Way Halo

Abel's Group

Remnants of first massive stars

Islam et al. 2003,2004; Zhao & SIlk 2005

Direct Collapse / Recoil Bertone et al. 2005; Mapelli et al. 2006; Micic et al. 2006

Dynamical Ejection

Volonteri & Perna 2005

Gravitational Wave Recoil

Madau & Quataert 2004;Volonteri & Perna 2005; Libeskind et al. 2006; Micic et al. 2006; Holley-Bockelmann et al. 2008; O'Leary & Loeb 2009,2010

Thursday, September 1, 2011

Limits in the Halo

Bondi-Hoyle-Litttleton Accretion

Islam et al. 2004; Mii et al. 2005; Mapelli et al. 2006

ULX?

Poor Constraints: < .1% of baryons

Limits in the Halo

Dark Matter Annihilation

Bertone et al. 2005;

Assume BHs form in centers of dark matter halos

DM annihilates in cusp

Most 'Luminous' Events

 $E_{\rm GW} \sim .1 M c^2$

 $L_{\rm GW} \sim 10^{-2} \frac{c^5}{G}$

 $\gtrsim 10^{57} \,\mathrm{erg \ s^{-1}}$

Cluster Expansion

Numerically Solve Time Dependent Fokker-Planck Equations with Loss Cone (Bahcall & Wolf 1976/1977)

Cluster Rapidly Expands

Relaxation Time ~ Time since ejection

Cluster around a 10⁵ M_o ejected BH

Observations: Getting My Hands Dirty

Look for: /larger than 3" to get rid of
partially resolved binaries

CIERA Frontiers

Ryan O'Leary

Look for: larger than 3" to get rid of partially resolved binaries
Stellar Colors

SDSS DR 7

CIERA Frontiers

Look for: larger than 3" to get rid of
partially resolved binaries
Stellar Colors
Round Shape

SDSS DR

CIERA Frontiers

Look for:

Iarger than 3" to get rid of partially resolved binaries
Stellar Colors
Round Shape
Correct Light Profile

SDSS DR 7

CIERA Frontiers

Cluster of Stars

Genzel et al. 2003

Cluster of Stars

Genzel et al. 2003

