Rayleigh-Taylor Unstable Flames

Elizabeth P. Hicks ${ }^{1,2}$ and Robert Rosner ${ }^{2}$

CIERA, Northwestern University ${ }^{1}$
University of Chicago ${ }^{2}$
CIERA Conference: September 2, 2011

Type la Supernovae

Image: NASA

Deflagration to Detonation Transition (DDT)

In order to get the correct explosion properties the SN la flame must become supersonic.

- Deflagration: A subsonic flame
- Detonation: A supersonic flame with an associated shock wave

Two ways for this to occur:

- Zeldovich Gradient Mechanism
- Flame exceeds the sound speed because fluid instabilities (Rayleigh-Taylor instability) increase the surface area of the flame

Rayleigh-Taylor Instability

The source of wrinkling: the Rayleigh-Taylor instability

- The fuel is more dense than the ash
- The flame propages upward against the direction of gravity

Image: LLNL

Some important questions:

How do flows generated by the flame interact with the flame front?

- What causes changes in the surface area of the flame?
- At what G does the Rayleigh-Taylor instability become important?
- How much can Rayleigh-Taylor driven turbulence wrinkle the flame front?

Difficulties for Simulations

1. Current Supercomputers are unable to resolve the flame and the whole white dwarf at the same time.

- Size of White Dwarf $=7 * 10^{8} \mathrm{~cm}$, Width of Flame $=.01-1 \mathrm{~cm}$
- Subgrid Models for flame behavior are necessary

What kind of subgrid model is actually appropriate?

- Flame Speed = Rayleigh-Taylor speed
- Flame Speed determined by Kolmogorov Turbulence

2. Full Reaction Networks are very stiff and difficult to integrate

Study Flames Directly

Avoid these problems and study a very simplified case:

1. A flame in a rectangular computational domain
2. Constant gravity
3. Use a simple, model reaction

Flame in a Gravitational Field

Important Parameters

Non-Dimensional Gravity:

$$
G=g\left(\frac{\triangle \rho}{\rho_{0}}\right) \frac{\delta}{s_{o}^{2}}
$$

Prandtl Number:

$$
\operatorname{Pr}=\frac{\nu}{\kappa}=1
$$

Non-Dimensional Box Size:

$$
L=\frac{l}{\delta}=128
$$

What happens when gravity is increased?

Transition-to-turbulence type problem

- Look for low-dimensional dynamical systems and simple bifurcations when G is small
- Consider the effects of turbulence when G is large

Dynamical System

A dynamical system consists of a state space plus a rule for time evolution in that space.
$x=\dot{\Theta}$
$y=\dot{\Theta}$
$\dot{y}=-\frac{g}{L} \sin (x)$
$\dot{x}=y$

Image: S. Shadden

Bifurcations

A bifurcation is a change in a system as a control parameter is increased. Example:

$$
\dot{y}=\lambda y-y^{3}
$$

λ is the control parameter

Low G Systems

General Strategy:

- Pick an observable to model (examples: velocity at a point, flame speed)
- Treat the observable as part of an underlying low-dimensional dynamical system.

Spatial behaviors can be understood temporally

Flame: Fixed Point Example $(G=0.001)$

Temp. Vx Vy Vorticity

- The flame moves upward at a constant speed.

Cusped Flame Front, Stable Rolls $(G=0.17)$

Temp. Vx Vy Vorticity

- Flame front becomes cusped.
- Stable rolls attach to the flame front
- Flame speed is still constant

Unstable Rolls $(G=0.24)$

Temp. Vx Vy Vorticity

- Shear instability destabilizes the rolls
- Vortex Shedding begins!
- Flame speed is still constant
 shedding?

Image: Van Dyke

- Vortex shedding creates periodic behavior: Hopf bifurcation
- Similar system: flow past a cylinder (von Karman vortex street)
- Cylinder: Shedding at near critical Re governed by the Landau equation (Strykowski and Sreenivasan $1986,1987,1990$)

Landau Equation: Governs shedding behind the flame

The Landau equation is satisfied in the vortex forming region behind the flame.

$$
\frac{d A}{d t}=a A-\frac{1}{2} c|A|^{2} A
$$

- In this case, choose V_{x} as A
- The beginning of periodic motion is a Hopf bifurcation.
- $G_{c r} \approx .22$

Vortex shedding is can be modelled by a time-dependent process with a secondary spatial dependence.

Time Series Analysis of the Flame Speed

Observe the flame speed to learn about the underlying "dynamical system"

- When vortex shedding moves close enough to the flame front, the flame speed begins to oscillate. $(G \approx 0.3)$
- Period Doubling: Left/Right Symmetry Breaks ($G \approx 0.6$)
- Torus Bifurcation: Cusp Breaks ($G \approx 0.85$)

$\mathrm{G}=0.24$	0.25	0.26	0.27	0.28	0.29	0.3

Period Doubling

- Between $G=0.5$ and $G=0.7$ a period doubling occurs.

Period Doubling: Power Spectra

Period Doubling- Left/Right Symmetry Breaks

- Base Period: Up/down motion of the flame
- Doubled Period:
Side-to-side motion

Torus bifurcation

- An extra, incommensurate frequency develops.

Torus bifurcation: Power Spectra

Torus Bifurcation: Cusp Breaking $(G=0.9)$

Temp. Vx Vy Vorticity

- New Frequency introduced by cusp breaking
- The cusp is broken when the Rayleigh-Taylor instability begins to overwhelm burning.

Summary for $G \leq 1$

Conclusions for low-G flames

Dynamical systems theory gives simple, but powerful, models for understanding complex-looking flame behaviors.

What causes changes in the surface area of the flame?

- At low G, the cusp creates vortex rolls which become unstable by a shear instability. These rolls affect the flame surface from behind.
- The flame front is disturbed by material behind it even at low values of G.
At what G does the Rayleigh-Taylor instability become important?
- R-T becomes directly important at $G=0.9$

High G Flames $(G \geq 1)$

Two important questions:

1. What is the flame speed?
2. How well is turbulence able to wrinkle the flame front?

Flame Speed Scaling

The average flame speed scales as $s \propto \sqrt{G L}$.

Average Flame Speed vs. G

Subgrid models should be based on the Rayleigh-Taylor flame speed!

Box-Counting (Fractal) Dimension

$$
D_{\text {frac }}=-\lim _{\epsilon \rightarrow 0} \frac{\log (N(\epsilon))}{\log (\epsilon)}
$$

(Mandelbrot 1967)
Image: Wikipedia

Measuring Flame Wrinkling- Fractal Dimension

Average Fractal Dimension

- The flame front is wrinkled by turbulence, but the amount of wrinkling levels off.
- Claim: At high values of G, large-scale stretching of the flame by the RT instability controls the flame dynamics.

Fractal Dimension Model for the Flame Speed

The flame speed is proportional to the flame area:

$$
\frac{s}{s_{0}}=\frac{L_{f}}{L}
$$

The length of the flame is determined by:

- Large-scale Rayleigh-Taylor stretching
- Wrinkling at all scales by turbulence

What are the contributions from each of these effects?

A model for the flame area:

$$
L_{f}=L_{R T}(G) *\left(\frac{L}{\eta(G)}\right)^{D_{F}-1}
$$

$L=$ the size of the largest eddies (the box size)
$\eta=$ the size of the smallest eddies (the Kolmogorov cutoff scale)

Some useful relations:

- For large values of G, $D_{F} \rightarrow 1.5$.
- For 2D turbulence, $\eta=L * R e^{-1 / 2}$.
- $R e=L\left(1+0.2 L\left(G-G_{1}\right)\right)^{0.56}$

Altogether this gives:

$$
L_{f} \propto L_{R T}(G) * G^{0.14}
$$

We already know that $s \propto \sqrt{G L}$ so:

- Rayleigh-Taylor stretching scales as: $G^{0.36}$
- Turbulent wrinkling scales as: $G^{0.14}$

Large-scale Rayleigh-Taylor stretching dominates the flame speed for high values of G.

Conclusions

- At low G, flames can be described by simple, low-dimensional bifurcation models.
- The initial disturbance of the flame surface is due to a shear instability behind the flame front.
- At large G, the Rayleigh-Taylor instability controls the burning rate by stretching the flame front.
- Subgrid models should be based on the Rayleigh-Taylor flame speed.
- The DDT transition is not possible for flames under these conditions.

Nek5000

DNS/LES computational fluid dynamics solver

Developers: Paul Fischer (chief architect), Aleks Obabko, James Lottes, Stefan Kerkemeier, Katie Heisey

Features:

- Spectral Element Code
- Incompressible or low-Mach number
- Very fast and efficient
- Low memory use
- Scales up to 100, 000 processors
- Works very well with solid boundaries

Website: http://nek5000.mcs.anl.gov

Flame Simulations

Parameters-WD

ρ_{9}	\mathbf{G}	\mathbf{L}	$\mathbf{G L}$
10	$3.1 * 10^{-13}$	$7.9 * 10^{12}$	2.44
8	$6.4 * 10^{-13}$	$6.1 * 10^{12}$	3.9
6	$1.9 * 10^{-12}$	$4 * 10^{12}$	7.6
4	$9.5 * 10^{-12}$	$2 * 10^{12}$	19.5
2	$2.1 * 10^{-10}$	$5.4 * 10^{11}$	114
1	$6.5 * 10^{-9}$	$1.4 * 10^{11}$	910
.5	$2.1 * 10^{-7}$	$3.6 * 10^{10}$	7500
.2	$6.8 * 10^{-5}$	$4.9 * 10^{9}$	$3.3 * 10^{5}$
.1	$2 * 10^{-2}$	$1.2 * 10^{8}$	$2.5 * 10^{6}$
.05	$8.7 * 10^{-1}$	$4.3 * 10^{7}$	$3.8 * 10^{7}$
.01	$4.5 * 10^{2}$	$1.2 * 10^{7}$	$5.2 * 10^{9}$

Parameters-Simulations

\mathbf{G}	\mathbf{L}	$\mathbf{G L}$
.25	128	32
.5	128	64
1	128	128
2	128	256
4	128	512
8	128	1024
16	128	2048
32	128	4096
64	128	8192
128	128	16384

The Equations

Bistable Reaction:

- Use the Boussinesq

Approximation

Equations

Navier-Stokes Equation:

$$
\frac{D \mathbf{u}}{D t}=-\left(\frac{1}{\rho_{o}}\right) \nabla p+\frac{\rho \mathbf{g}}{\rho_{o}}+\nu \nabla^{2} \mathbf{u}
$$

Heat Equation:

$$
\frac{D T}{D t}=\kappa \nabla^{2} T+R(T)
$$

Continuity Equation:

$$
\nabla \cdot \mathbf{u}=0
$$

$$
R(T)=2 T^{2}(1-T)
$$

Definitions

Laminar Flame Speed:

$$
s_{o}=\sqrt{\alpha \kappa}
$$

Flame Width:

$$
\delta=\sqrt{\frac{\kappa}{\alpha}}
$$

κ is the thermal diffusivity
$\frac{1}{\alpha}$ is the reaction time

Non-Dimensional Equations

Equations

Navier-Stokes Equation:

$$
\frac{D \mathbf{u}}{D t}=-\left(\frac{1}{\rho_{o}}\right) \nabla p+G T+\operatorname{Pr} \nabla^{2} \mathbf{u}
$$

Heat Equation:

$$
\frac{D T}{D t}=\nabla^{2} T+2 T^{2}(1-T)
$$

Continuity Equation:

$$
\nabla \cdot \mathbf{u}=0
$$

Control Parameters

Non-Dimensional Gravity:

$$
G=g\left(\frac{\triangle \rho}{\rho_{o}}\right) \frac{\delta}{s_{o}^{2}}
$$

Prandtl Number:

$$
\operatorname{Pr}=\frac{\nu}{\kappa}=1
$$

Non-Dimensional Box Size:

$$
L=\frac{l}{\delta}=128
$$

