Rayleigh-Taylor Unstable Flames

Elizabeth P. Hicks^{1,2} and Robert Rosner²

CIERA, Northwestern University¹ University of Chicago²

CIERA Conference: September 2, 2011

Type la Supernovae

Image: NASA

Deflagration to Detonation Transition (DDT)

In order to get the correct explosion properties the SN Ia flame must become supersonic.

- Deflagration: A subsonic flame
- Detonation: A supersonic flame with an associated shock wave

Two ways for this to occur:

- Zeldovich Gradient Mechanism
- Flame exceeds the sound speed because fluid instabilities (Rayleigh-Taylor instability) increase the surface area of the flame

Rayleigh-Taylor Instability

The source of wrinkling: the Rayleigh-Taylor instability

- The fuel is more dense than the ash
- ► The flame propages upward against the direction of gravity

Image: LLNL

How do flows generated by the flame interact with the flame front?

- What causes changes in the surface area of the flame?
- At what G does the Rayleigh-Taylor instability become important?
- How much can Rayleigh-Taylor driven turbulence wrinkle the flame front?

Difficulties for Simulations

1. Current Supercomputers are unable to resolve the flame and the whole white dwarf at the same time.

- Size of White Dwarf= $7 * 10^8$ cm, Width of Flame= .01 1 cm
- Subgrid Models for flame behavior are necessary

What kind of subgrid model is actually appropriate?

- Flame Speed = Rayleigh-Taylor speed
- Flame Speed determined by Kolmogorov Turbulence
- 2. Full Reaction Networks are very stiff and difficult to integrate

Avoid these problems and study a very simplified case:

- 1. A flame in a rectangular computational domain
- 2. Constant gravity
- 3. Use a simple, model reaction

Flame in a Gravitational Field

Important Parameters

Non-Dimensional Gravity:

$$G = g\left(\frac{\Delta\rho}{\rho_o}\right)\frac{\delta}{s_o^2}$$

Prandtl Number:

$$Pr = \frac{\nu}{\kappa} = 1$$

Non-Dimensional Box Size:

$$L = \frac{l}{\delta} = 128$$

What happens when gravity is increased?

Transition-to-turbulence type problem

- Look for low-dimensional dynamical systems and simple bifurcations when G is small
- ► Consider the effects of turbulence when G is large

Dynamical System

A **dynamical system** consists of a state space plus a rule for time evolution in that space.

Image: S. Shadden

Bifurcations

A **bifurcation** is a change in a system as a **control parameter** is increased. Example:

$$\dot{y} = \lambda y - y^3$$

 λ is the control parameter

12

Low G Systems

General Strategy:

- Pick an observable to model (examples: velocity at a point, flame speed)
- Treat the observable as part of an underlying low-dimensional dynamical system.

Spatial behaviors can be understood temporally

Flame: Fixed Point Example (G = 0.001)

 The flame moves upward at a constant speed.

Х

Cusped Flame Front, Stable Rolls (G = 0.17)

- Flame front becomes cusped.
- Stable rolls attach to the flame front
- Flame speed is still constant

Unstable Rolls (G = 0.24)

- Shear instability destabilizes the rolls
- Vortex Shedding begins!
- Flame speed is still constant

Vorticity Temp. Vx Vy

Is there a low-dimensional model that describes the vortex shedding?

Image: Van Dyke

- Vortex shedding creates periodic behavior: Hopf bifurcation
- Similar system: flow past a cylinder (von Karman vortex street)
- Cylinder: Shedding at near critical Re governed by the Landau equation (Strykowski and Sreenivasan 1986,1987,1990)

Landau Equation: Governs shedding behind the flame

The Landau equation is satisfied in the vortex forming region behind the flame.

$$\frac{dA}{dt} = aA - \frac{1}{2}c|A|^2A$$

- In this case, choose V_x as A
- The beginning of periodic motion is a Hopf bifurcation.

•
$$G_{cr} \approx .22$$

Vortex shedding is can be modelled by a time-dependent process with a secondary spatial dependence.

Time Series Analysis of the Flame Speed

Observe the flame speed to learn about the underlying "dynamical system"

- ▶ When vortex shedding moves close enough to the flame front, the flame speed begins to oscillate. ($G \approx 0.3$)
- Period Doubling: Left/Right Symmetry Breaks ($G \approx 0.6$)
- Torus Bifurcation: Cusp Breaks ($G \approx 0.85$)

C	G=0.24	0.25	0.26	0.27	0.28	0.29	0.3

Period Doubling

• Between G = 0.5 and G = 0.7 a period doubling occurs.

Period Doubling: Power Spectra

Period Doubling- Left/Right Symmetry Breaks

Speed

- Base Period: Up/down motion of the flame
- Doubled
 Period:
 Side-to-side
 motion

Torus bifurcation

Torus bifurcation: Power Spectra

Torus Bifurcation: Cusp Breaking (G = 0.9)

- New Frequency introduced by cusp breaking
- The cusp is broken when the Rayleigh-Taylor instability begins to overwhelm burning.

Summary for $G \leq 1$

Conclusions for low-G flames

Dynamical systems theory gives simple, but powerful, models for understanding complex-looking flame behaviors.

What causes changes in the surface area of the flame?

- At low G, the cusp creates vortex rolls which become unstable by a shear instability. These rolls affect the flame surface from behind.
- The flame front is disturbed by material behind it even at low values of G.

At what G does the Rayleigh-Taylor instability become important?

• R-T becomes directly important at G = 0.9

High G Flames ($G \ge 1$)

Two important questions:

- 1. What is the flame speed?
- 2. How well is turbulence able to wrinkle the flame front?

Flame Speed Scaling

The average flame speed scales as $s \propto \sqrt{GL}$.

Subgrid models should be based on the Rayleigh-Taylor flame speed!

Box-Counting (Fractal) Dimension

(Mandelbrot 1967)

Measuring Flame Wrinkling- Fractal Dimension

- The flame front is wrinkled by turbulence, but the amount of wrinkling levels off.
- Claim: At high values of G, large-scale stretching of the flame by the RT instability controls the flame dynamics.

Fractal Dimension Model for the Flame Speed

The flame speed is proportional to the flame area:

$$\frac{s}{s_o} = \frac{L_f}{L}$$

The length of the flame is determined by:

- Large-scale Rayleigh-Taylor stretching
- Wrinkling at all scales by turbulence

What are the contributions from each of these effects?

A model for the flame area:

$$L_f = L_{RT}(G) * \left(\frac{L}{\eta(G)}\right)^{D_F - 1}$$

L = the size of the largest eddies (the box size)

 $\eta =$ the size of the smallest eddies (the Kolmogorov cutoff scale)

Some useful relations:

- For large values of G, $D_F \rightarrow 1.5$.
- For 2D turbulence, $\eta = L * Re^{-1/2}$.
- $Re = L(1 + 0.2L(G G_1))^{0.56}$

Altogether this gives:

```
L_f \propto L_{RT}(G) * G^{0.14}
```

We already know that $s \propto \sqrt{GL}$ so:

- Rayleigh-Taylor stretching scales as: $G^{0.36}$
- Turbulent wrinkling scales as: G^{0.14}

Large-scale Rayleigh-Taylor stretching dominates the flame speed for high values of G.

Conclusions

- At low G, flames can be described by simple, low-dimensional bifurcation models.
- The initial disturbance of the flame surface is due to a shear instability behind the flame front.
- At large G, the Rayleigh-Taylor instability controls the burning rate by stretching the flame front.
- Subgrid models should be based on the Rayleigh-Taylor flame speed.
- The DDT transition is not possible for flames under these conditions.

Nek5000

DNS/LES computational fluid dynamics solver

Developers: Paul Fischer (chief architect), Aleks Obabko, James Lottes, Stefan Kerkemeier, Katie Heisey

Features:

- Spectral Element Code
- Incompressible or low-Mach number
- Very fast and efficient
- Low memory use
- Scales up to 100,000 processors
- Works very well with solid boundaries

Website: http://nek5000.mcs.anl.gov

Flame Simulations

Parameters-WD

ρ_9	G	L	GL
10	$3.1 * 10^{-13}$	$7.9 * 10^{12}$	2.44
8	$6.4 * 10^{-13}$	$6.1 * 10^{12}$	3.9
6	$1.9 * 10^{-12}$	$4 * 10^{12}$	7.6
4	$9.5 * 10^{-12}$	$2 * 10^{12}$	19.5
2	$2.1 * 10^{-10}$	$5.4 * 10^{11}$	114
1	$6.5 * 10^{-9}$	$1.4 * 10^{11}$	910
.5	$2.1 * 10^{-7}$	$3.6 * 10^{10}$	7500
.2	$6.8 * 10^{-5}$	$4.9 * 10^9$	3.3 * 10 ⁵
.1	$2 * 10^{-2}$	$1.2 * 10^8$	$2.5 * 10^{6}$
.05	$8.7 * 10^{-1}$	$4.3 * 10^{7}$	$3.8 * 10^7$
.01	$4.5 * 10^2$	$1.2 * 10^{7}$	$5.2 * 10^9$

Parameters-Simulations							
G	L	GL					
.25	128	32					
.5	128	64					
1	128	128					
2	128	256					
4	128	512					
8	128	1024					
16	128	2048					
32	128	4096					
64	128	8192					
128	128	16384					

The Equations

 Use the Boussinesq Approximation

Equations

Navier-Stokes Equation:

$$rac{D \mathbf{u}}{D t} = -\left(rac{1}{
ho_{\mathbf{o}}}
ight)
abla \mathbf{p} + rac{
ho \mathbf{g}}{
ho_{\mathbf{o}}} +
u
abla^2 \mathbf{u}$$

Heat Equation:

$$\frac{DT}{Dt} = \kappa \nabla^2 T + R(T)$$

Continuity Equation:

 $abla \cdot \mathbf{u} = \mathbf{0}$

Bistable Reaction:

$$R(T)=2T^2(1-T)$$

Definitions

Laminar Flame Speed:

$$s_o = \sqrt{\alpha \kappa}$$

Flame Width:

$$\delta = \sqrt{\frac{\kappa}{\alpha}}$$

 κ is the thermal diffusivity $\frac{1}{\alpha}$ is the reaction time

Non-Dimensional Equations

Equations

Navier-Stokes Equation:

$$rac{D \mathbf{u}}{D t} = -\left(rac{1}{
ho_o}
ight)
abla \mathbf{p} + G T + P r
abla^2 \mathbf{u}$$

Heat Equation:

$$\frac{DT}{Dt} = \nabla^2 T + 2T^2(1-T)$$

Continuity Equation:

$$abla \cdot \mathbf{u} = \mathbf{0}$$

Control Parameters

Non-Dimensional Gravity:

$$G = g\left(\frac{ riangle
ho}{
ho_o}
ight) rac{\delta}{s_o^2}$$

Prandtl Number:

$$\Pr = rac{
u}{\kappa} = 1$$

Non-Dimensional Box Size:

$$L = rac{l}{\delta} = 128$$