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Type Ia Supernovae

Image: NASA
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Deflagration to Detonation Transition (DDT)

In order to get the correct explosion properties the SN Ia flame
must become supersonic.

I Deflagration: A subsonic flame

I Detonation: A supersonic flame with an associated shock
wave

Two ways for this to occur:

I Zeldovich Gradient Mechanism

I Flame exceeds the sound speed because fluid instabilities
(Rayleigh-Taylor instability) increase the surface area of the
flame
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Rayleigh-Taylor Instability

The source of wrinkling: the Rayleigh-Taylor instability

I The fuel is more dense than the ash

I The flame propages upward against the direction of gravity

Image: LLNL
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Some important questions:

How do flows generated by the flame interact with the flame front?

I What causes changes in the surface area of the flame?

I At what G does the Rayleigh-Taylor instability become
important?

I How much can Rayleigh-Taylor driven turbulence wrinkle the
flame front?
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Difficulties for Simulations

1. Current Supercomputers are unable to resolve the flame
and the whole white dwarf at the same time.

I Size of White Dwarf= 7 ∗ 108cm, Width of Flame= .01− 1 cm
I Subgrid Models for flame behavior are necessary

What kind of subgrid model is actually appropriate?

I Flame Speed = Rayleigh-Taylor speed
I Flame Speed determined by Kolmogorov Turbulence

2. Full Reaction Networks are very stiff and difficult to
integrate
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Study Flames Directly

Avoid these problems and study a very simplified case:

1. A flame in a rectangular computational domain

2. Constant gravity

3. Use a simple, model reaction
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Flame in a Gravitational Field
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I The flame is Rayleigh-Taylor
unstable.

I Code: Nek5000 (P. Fischer,
ANL)
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Important Parameters

Non-Dimensional Gravity:

G = g

(
4ρ

ρo

)
δ

s2
o

Prandtl Number:
Pr =

ν

κ
= 1

Non-Dimensional Box Size:

L =
l

δ
= 128
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What happens when gravity is increased?

Transition-to-turbulence type problem

I Look for low-dimensional dynamical systems and simple
bifurcations when G is small

I Consider the effects of turbulence when G is large
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Dynamical System

A dynamical system consists of a state space plus a rule for time
evolution in that space.

x = Θ
y = Θ̇

ẏ = −g
L sin(x)

ẋ = y

Image: S. Shadden
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Bifurcations
A bifurcation is a change in a system as a control parameter is
increased. Example:

ẏ = λy − y3

λ is the control parameter
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Low G Systems

General Strategy:

I Pick an observable to model (examples: velocity at a point,
flame speed)

I Treat the observable as part of an underlying low-dimensional
dynamical system.

Spatial behaviors can be understood temporally
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Flame: Fixed Point Example (G = 0.001)

Temp. VorticityVyVx

y

x

I The flame moves upward at
a constant speed.
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Cusped Flame Front, Stable Rolls (G = 0.17)

I Flame front becomes
cusped.

I Stable rolls attach to the
flame front

I Flame speed is still constant
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Unstable Rolls (G = 0.24)

I Shear instability
destabilizes the rolls

I Vortex Shedding begins!

I Flame speed is still constant
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Is there a low-dimensional model that describes the vortex
shedding?

Image: Van Dyke

I Vortex shedding creates periodic behavior: Hopf bifurcation
I Similar system: flow past a cylinder (von Karman vortex

street)
I Cylinder: Shedding at near critical Re governed by the Landau

equation (Strykowski and Sreenivasan 1986,1987,1990)
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Landau Equation: Governs shedding behind the flame

The Landau equation is satisfied in the vortex forming region
behind the flame.

dA

dt
= aA− 1

2
c |A|2A

I In this case, choose Vx as A

I The beginning of periodic motion is a Hopf bifurcation.

I Gcr ≈ .22

Vortex shedding is can be modelled by a time-dependent process
with a secondary spatial dependence.
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Time Series Analysis of the Flame Speed

Observe the flame speed to learn about the underlying
“dynamical system”

I When vortex shedding moves close enough to the flame front,
the flame speed begins to oscillate. (G ≈ 0.3)

I Period Doubling: Left/Right Symmetry Breaks (G ≈ 0.6)

I Torus Bifurcation: Cusp Breaks (G ≈ 0.85)
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Period Doubling
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I Between G = 0.5 and G = 0.7 a period doubling occurs.
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Period Doubling: Power Spectra

0.0

0.2

0.4

0.6

P
o
w

er
 *

 1
0

5 f1

2f1

G=0.5

0.0

0.4

0.8

1.2

1.6

0.00 0.01 0.02 0.03 0.04

P
o
w

er
 *

 1
0

5

Frequency

f1

f1/2
3f1/2

2f1

G=0.7



23

Period Doubling- Left/Right Symmetry Breaks

I Base Period:
Up/down
motion of the
flame

I Doubled
Period:
Side-to-side
motion



24

Torus bifurcation
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I An extra, incommensurate frequency develops.
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Torus bifurcation: Power Spectra
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Torus Bifurcation: Cusp Breaking (G = 0.9)

I New Frequency introduced
by cusp breaking

I The cusp is broken when the
Rayleigh-Taylor instability
begins to overwhelm
burning.

Temp. VorticityVyVx
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Summary for G ≤ 1

G=0

.2

1

.8

.6

.4

Vortex shedding (Hopf bifurcation)
Flame speed oscillations begin

Left/right symmetry breaks
(period doubling)

Cusp breaks (torus bifurcation)

Flat flame front (fixed point)
Cusp forms
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Conclusions for low-G flames

Dynamical systems theory gives simple, but powerful, models
for understanding complex-looking flame behaviors.

What causes changes in the surface area of the flame?

I At low G, the cusp creates vortex rolls which become unstable
by a shear instability. These rolls affect the flame surface from
behind.

I The flame front is disturbed by material behind it even at low
values of G .

At what G does the Rayleigh-Taylor instability become important?

I R-T becomes directly important at G = 0.9
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High G Flames (G ≥ 1)

Two important questions:

1. What is the flame speed?

2. How well is turbulence able to wrinkle the flame front?
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Flame Speed Scaling

The average flame speed scales as s ∝
√

GL.

 1
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Average Flame Speed vs. G

savg=so(1+0.050 L(G-G1))
(1/2)

 =so(1+0.066 L(G-G1))
0.47

 

Subgrid models should be based on the Rayleigh-Taylor
flame speed!
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Box-Counting (Fractal) Dimension

Dfrac = − lim
ε→0

log(N(ε))

log(ε)

(Mandelbrot 1967)

Image: Wikipedia
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Measuring Flame Wrinkling- Fractal Dimension
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I The flame front is wrinkled by turbulence, but the amount of
wrinkling levels off.

I Claim: At high values of G, large-scale stretching of the
flame by the RT instability controls the flame dynamics.
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Fractal Dimension Model for the Flame Speed

The flame speed is proportional to the flame area:

s

so
=

Lf

L

The length of the flame is determined by:

I Large-scale Rayleigh-Taylor stretching

I Wrinkling at all scales by turbulence

What are the contributions from each of these effects?
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A model for the flame area:

Lf = LRT (G ) ∗
(

L

η(G )

)DF−1

L = the size of the largest eddies (the box size)
η = the size of the smallest eddies (the Kolmogorov cutoff scale)

Some useful relations:

I For large values of G, DF → 1.5.

I For 2D turbulence, η = L ∗ Re−1/2.

I Re = L(1 + 0.2L(G − G1))
0.56
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Altogether this gives:

Lf ∝ LRT (G ) ∗ G 0.14

We already know that s ∝
√

GL so:

I Rayleigh-Taylor stretching scales as: G 0.36

I Turbulent wrinkling scales as: G 0.14

Large-scale Rayleigh-Taylor stretching dominates the flame
speed for high values of G.
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Conclusions

I At low G, flames can be described by simple, low-dimensional
bifurcation models.

I The initial disturbance of the flame surface is due to a shear
instability behind the flame front.

I At large G, the Rayleigh-Taylor instability controls the burning
rate by stretching the flame front.

I Subgrid models should be based on the Rayleigh-Taylor flame
speed.

I The DDT transition is not possible for flames under these
conditions.
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Nek5000

DNS/LES computational fluid dynamics solver

Developers: Paul Fischer (chief architect), Aleks Obabko, James
Lottes, Stefan Kerkemeier, Katie Heisey

Features:

I Spectral Element Code

I Incompressible or low-Mach number

I Very fast and efficient

I Low memory use

I Scales up to 100, 000 processors

I Works very well with solid boundaries

Website: http://nek5000.mcs.anl.gov
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Flame Simulations

Parameters-WD
ρ9 G L GL

10 3.1 ∗ 10−13 7.9 ∗ 1012 2.44

8 6.4 ∗ 10−13 6.1 ∗ 1012 3.9

6 1.9 ∗ 10−12 4 ∗ 1012 7.6

4 9.5 ∗ 10−12 2 ∗ 1012 19.5

2 2.1 ∗ 10−10 5.4 ∗ 1011 114

1 6.5 ∗ 10−9 1.4 ∗ 1011 910

.5 2.1 ∗ 10−7 3.6 ∗ 1010 7500

.2 6.8 ∗ 10−5 4.9 ∗ 109 3.3 ∗ 105

.1 2 ∗ 10−2 1.2 ∗ 108 2.5 ∗ 106

.05 8.7 ∗ 10−1 4.3 ∗ 107 3.8 ∗ 107

.01 4.5 ∗ 102 1.2 ∗ 107 5.2 ∗ 109

Parameters-Simulations
G L GL

.25 128 32

.5 128 64

1 128 128

2 128 256

4 128 512

8 128 1024

16 128 2048

32 128 4096

64 128 8192

128 128 16384
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The Equations

I Use the Boussinesq
Approximation

Equations

Navier-Stokes Equation:

Du

Dt
= −

(
1

ρo

)
∇p +

ρg

ρo
+ ν∇2u

Heat Equation:

DT

Dt
= κ∇2T + R(T )

Continuity Equation:

∇ · u = 0

Bistable Reaction:

R(T ) = 2T 2(1− T )

Definitions

Laminar Flame Speed:

so =
√

ακ

Flame Width:

δ =

√
κ

α

κ is the thermal diffusivity
1

α
is the reaction time
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Non-Dimensional Equations

Equations

Navier-Stokes Equation:

Du

Dt
= −

(
1

ρo

)
∇p+GT +Pr∇2u

Heat Equation:

DT

Dt
= ∇2T + 2T 2(1− T )

Continuity Equation:

∇ · u = 0

Control Parameters

Non-Dimensional Gravity:

G = g

(
4ρ

ρo

)
δ

s2
o

Prandtl Number:

Pr =
ν

κ
= 1

Non-Dimensional Box Size:

L =
l

δ
= 128
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