Magnetically-Levitating Accretion Disks

Evghenii Gaburov Northwestern University

Tuesday, September 6, 2011

Magnetised ISM Strong galactic B-field

Crocker et al 2010, Nature

Magnetically levitating disks

Shibata et al 1990, Pariev et al 2003, Begelman & Pringle 2007

B-field is an extra source of pressure

JR Maglev

Levitating frog, Geim 1998, Ig Nobel prize 2000 (also won Nobel prize 2010 for graphene)

Magnetised ISM Strong galactic B-field

Crocker et al 2010, Nature

Magnetically levitating disks

Shibata et al 1990, Pariev et al 2003, Begelman & Pringle 2007

B-field is an extra source of pressure

JR Maglev

Levitating frog, Geim 1998, Ig Nobel prize 2000 (also won Nobel prize 2010 for graphene)

Disks around SMBH tend to fragment for r > 10⁻² pc e.g. Goodman 2003

Alexander et al 2008

Observations shows ~pc size disks

Miyoshi et al 1995, Nature (NGC 4258) Jaffe et al 2004, Nature (NGC 1068)

Parker instability

• Stratification with $P_{mag} = P_{gas}$ is unstable to magnetic buoyancy (Parker 1966)

Rigid rotation + Parker instability

Tuesday, September 6, 2011

Keplerian shear + Parker instability Unexpected physics

Johansen & Levin 2008

Can magnetically-levitating disks be formed ?

$$\beta_{\rm cl,0} = \frac{P_{\rm gas}}{P_{\rm mag}} = 1$$

Accretion disk is formed

Gas/magnetic pressure supported disk Magneto-Rotational Instability/Large scale field Prone/stable to fragmentation

log density

>

log density

>

>

Tuesday, September 6, 2011

Tuesday, September 6, 2011

Azimuthal field confinement

Azimuthal field confinement

Parker instability

Parker instability

Fluid slides downwards

Coriolis force

Keplerian shear

Keplerian shear

Keplerian shear

Field confinement rightarrow new accretion disk model

 $\delta M = 2\pi R \rho H v_r \delta t$ $\delta \Phi = B_{\phi} H v_r \delta t$

Flux confinement + Frozen-in condition: $\frac{\delta M}{\delta \Phi} = const$

Independent

of thermal structure

Assuming $\beta = P_{gas}/P_{mag} \ll 1$

$$\sum \propto R^{-11/10} \alpha^{-3/5}$$

$$H \propto R^{13/10} \alpha^{-1/5}$$

$$B_{\phi} = \alpha^{-1} B_R \propto R^{-7/5} \alpha^{-2/5}$$

$$\alpha = -\langle B_r B_{\phi} \rangle / P_{tot} \sim 0.2$$

Tuesday, September 6, 2011

Stability to fragmentation

Main features of Magnetically-Levitating Accretion Disks Long-lived large scale field

Magnetically supported disks

Clumpy & filamentary density

High accretion rates

Common outcome of a collision between magnetised gas cloud and supermassive black hole

Accretion rate

R	\dot{M}	$lpha_{ m acc}$	lpha
0.05	0.035	0.06	0.03
0.1	0.066	0.09	0.14
0.2	0.070	0.22	0.18
0.4	0.085	0.37	0.31
0.8	0.045	0.33	0.23

Fragmentation

$$Q = \frac{\Omega^2 H}{\pi G \Sigma} < I \implies \rho_{\text{disk}} \gtrsim \frac{M_{\text{BH}}}{R^3}$$

 $\rho_{\text{MLAD}} \sim \Sigma/H \propto R^{-24/10} \alpha^{-2/5}$

Stable to fragmentation at ~pc

$$\frac{M_{\rm disk}}{M} \approx 0.331 \, \frac{r^{9/10}}{\zeta_{10}} \qquad \frac{H}{R} \approx 0.149 \, \frac{r^{3/10}}{\zeta_{10}} \quad r = \frac{R}{R_{\rm frag}}$$

