Type Ia Supernovae: Standardizable Candles and Crayons

Ryan Foley Clay Fellow Harvard-Smithsonian Center for Astrophysics Collaborators: Stephane Blondin Dan Kasen Bob Kirshner Kaisey Mandel & Nathan Sanders

SNe la Are Exploding White Dwarfs

White Dwarf in Binary System

Accretes Matter Until ~1.4 times the Mass of the Sun

Explodes and is Very, Very Luminous

SNe la Are Standard Candles

Peak luminosity $\sigma = 0.6$ mag

Peak absolute mag $V \approx -19.5$ mag!

Detectable at high redshifts

SNe la Are Standard Candles

Peak luminosity $\sigma = 0.6$ mag

Peak absolute mag V ≈ -19.5 mag!

Detectable at high redshifts

SNe la Are Standard Candles

As shown earlier, the observed dispersion in the maximum magnitudes of supernovae of type I is about 0^{m} 6, and the intrinsic dispersion should be even smaller. It is obvious, therefore, that these supernovae could be exceedingly useful indicators of distance. It should be possible to obtain average supernova magnitudes in clusters of galaxies to an accuracy of 0.1 or 0.2 mag, which corresponds to accuracies of 5% to 10% in the distances. The main problem now is one of calibration.

Kowal 1968

SNe la Are Standardizable Candles

σ = 0.18 mag (9% in distance)

Constraints on nature of dark energy:

 $w = 1 \pm 0.08$ (stat + sys)

Equal stat and sys errors

Different Intrinsic Colors

Different Intrinsic Colors

Supernova Explosions, an Analogy

Velocity

Velocity Gradient

Velocity Gradient

Velocity

Optical Spectrum to Measure Velocity

Optical Spectrum to Measure Velocity

Measure Silicon Velocity

High-Velocity ~ -13,000 km s⁻¹

Normal: ~ -10,000 km s⁻¹

Measure Silicon Velocity

High-Velocity ~ -13,000 km s⁻¹

Normal: ~ -10,000 km s⁻¹

Wang et al. 2009

121 SNe

121 SNe

High-Velocity Supernovae Are Redder

Shift in Color

Knowing Velocity Improves Distances

Knowing Velocity Improves Distances

Opacity Depends on Velocity

Opacity Depends on Velocity

Ellis et al. 2008

Asymmetric Explosion?

Kasen & Plewa 2007

Two Distinct Groups?

Velocity / Velocity Gradient

Total: 255 SNe 1630 Spectra

1 < Δm₁₅ < 1.5:
141 SNe
939 Spectra

 σ = 220 km/s

Foley, Sanders, & Kirshner 2011

Velocity and Light-Curve Shape

Finding Intrinsic Color

Foley, Sanders, & Kirshner 2011

Finding Intrinsic Color

Foley, Sanders, & Kirshner 2011

Foley et al., in prep.

Standardizable Crayons

High Velocity

Additional Projects

Sanders et al., in prep.

Mandel et al., in prep.

Implications

Previous SN la distances are biased

If average color/velocity shifts with redshift, cosmology measurements are biased

Future SN cosmology surveys (DES, LSST, WFIRST) may need spectroscopy

Looking for a new improvement for two decades

Higher velocity supernovae are redder

Color used to determine amount of dust and distance

Measuring velocity (standardizing the crayon) reduces bias and scatter more accurate and precise distances

Dark Energy measurements will improve