# Gravitational Wave Astronomy and Astrophysics

Will M. Farr CIERA Fellow

The Future of Astronomy: Fellows at the Frontiers of Science Northwestern University, Aug 31 – Sept 3, 2011





LIGO-G1100912

### Some CIERA Projects

- Secular Dynamics of Hot Jupiters: Naoz, WMF, et al (2011a,b)
- Supernova spin production: WMF, Kremer, Lyutikov, Kalogera (2011)
- Black Hole Mass Distribution: WMF, et al (2010)
- X-Ray Binary Evolution: Valsecchi, Glebbeek, WMF, et al (2010)
- Tides in WD binaries: Valsecchi, WMF, et al (2011)
- Gravitational Wave Parameter Estimation....

## NU LIGO Group

Vicky Kalogera (PI)

Diego Fazi

Vivien Raymond

Ben Farr

Carl Rodriguez





Marc van der Sluys



Ilya Mandel



#### Gravitational Waves

- Accelerating masses produce disturbances in spacetime.
- Propagate at speed of light, interact weakly => good observational tool.
- Produce changes in separation between test masses.
- Two polarizations: "+" (shown) and "x".



Abbott, et al (2009)





#### LIGO/Virgo Detectors

#### 4 km arms => $\Delta L = 10^{-21} L \sim 4 \times 10^{-18} m$

#### Sensitive to CBC up to ~100 Mpc.





LIGO Lab

| Rates of CBCs                                                                                                     |                     |                            |                    |  |  |
|-------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|--------------------|--|--|
| <ul> <li>See Abadie, <i>et al</i>, Class. Quant. Grav., <b>27</b>, 173001<br/>(2010), arXiv:1003.2480.</li> </ul> |                     |                            |                    |  |  |
| Objects                                                                                                           | per Myr<br>per MWEG | LIGO<br>(per yr)           | AdLIGO<br>(per yr) |  |  |
| NS-NS                                                                                                             | 1 - 4000            | 2 x 10 <sup>-4</sup> – 0.6 | 0.4 - 1000         |  |  |
| NS-BH                                                                                                             | 0.05 - 100          | 7 x 10 <sup>-5</sup> – 0.1 | 0.2 - 300          |  |  |
| BH-BH                                                                                                             | 0.01 – 30           | 2 x 10 <sup>-4</sup> – 0.5 | 0.4 - 1000         |  |  |

### Astrophysical Questions

- What are the mass distributions of coalescing compact objects?
- Are CBCs associated with an EM signal?
- How are compact binaries that coalesce formed?
- What is the accretion history of these objects?
- When matter is involved in the coalescence, what is its equation of state?

#### Waveform Parameters

| Intrinsic           | $M_1$ , $M_2$ or Mc, q                   | Controls length,<br>strength, f <sub>max</sub> .               |
|---------------------|------------------------------------------|----------------------------------------------------------------|
| Spin                | a <sub>1</sub> , a <sub>2</sub> , angles | Modulates waveform,<br>can accelerate or delay<br>coalescence. |
| Extrinsic           | RA, dec, distance, inclination, time     | Strength, polarization, sky location.                          |
| Extrinsic, Nuisance | Waveform phase, polarization angle.      |                                                                |



#### Parameter Estimation

- Given a stretch of data that contain both signal and random noise: d = n + s.
- Propose a signal (i.e. pick 15 parameters).
- Subtract:  $n = d h_{proposed}$ . Compute p(d|params) from knowledge of noise properties.
- Repeat, constructing probability distribution of parameters from Bayes' rule:

 $p(\text{params}|d) \propto p(d|\text{params})p(\text{params})$ 

#### MCMC

- Efficient sampling method (15-D!)
- Propose a change to current parameters, accept if better, or if worse with finite probability.



### MCMC Efficiency

- Want **rapid** and **accurate** parameter estimation, in highly-correlated, multi-modal parameter spaces. The key is to not waste jumps.
- Working on a code, LALInferenceMCMC, part of the LIGO Algorithms Library.
- Buzzwords: parallelized, parallel-tempered MCMC, capable of differential-evolution and correlated jumps.

#### Better Multi-Modal Proposals

- Farr & Mandel (2011).
- Interpolates within a cloud of points in n-D to propose a new jump.
- Allows for easy transitions between separate modes, or even models (spinning vs. non-spinning).
- To appear soon in LALInferenceMCMC





- See <u>http://www.ligo.org/science/GW100916/</u>.
- On Sept 16, 2010, a GW signal was injected into the HLV network (blind to the collaboration).



# Blind Parameter Estimation

- Quickly detected; alerts to ROTSE, TAROT, Skymapper, Zadko, and Swift for EM follow-up.
- Subsequent parameter analysis:

| $M_1$                 | 5.4 – 10.5 MSun |
|-----------------------|-----------------|
| $M_2$                 | 2.7 – 5.5 MSun  |
| <b>a</b> <sub>1</sub> | > 0.67          |
| d                     | 7–60 Mpc        |

• Uncertainties dominated by model differences (systematic).



#### Challenges in the Advanced Detector Era

- PE on detector data that is sensitive to much longer waveforms.
- Eliminating/understanding systematic uncertainties from waveform models.
- Improving efficiency/automating PE on spinning waveforms.
- Keeping up with the potential large numbers of detections to answer astrophysical questions!