Planetary Systems from Kepler

Dan Fabrycky UC Santa Cruz

... greatly indebted to the Kepler team!

Resonances

Name	Msin(i) mjupiter ±	Orbital Period days ±	Orbital Eccentricity ±
<u>55 Cnc c</u> 💷	0.168	44.379	0.05
<u>55 Cnc b</u>	0.83	14.6513	0.016

Novak, Lai, Lin 2003 see also: Terquem & Papaloizou 2008

Kepler Mission

- NASA, photometry of 150,000 stars
- Looking for Earth-like planets in transit
- ~30 ppm in 6 hours; 30 minute cadence
- 120 days are public (+90d this month!)

Kepler finds Multiplanets

(Steffen et al. 2010) Transit search and figures by Jason Rowe

Numbers of multiplanets:

- 115 doubles, 45 triples, 8 quaduples,
- 1 quintuple and 1 sextuple

Borucki et al. 2011

Latham, Rowe, Quinn et al. 2011

Lissauer, Ragozzine, Fabrycky et al. 2011

Kepler systems

Resonance Preference

Confirming a planetary system

Kepler-9 Holman, Fabrycky et al. 2010

Kepler-9 b-c-d

First Impressions

Dynamical Model of Transits

- 1) Use Newton's equations to integrate a 3-body system. $\mathbf{r}_s \ \dot{\mathbf{r}}_s$
- 2) Find transit by Newton's method $c_{\mathbf{r}_s}$ $\dot{\mathbf{r}}_s$
- 3) Print out times of RV and transit t, ,

Fits to the data obtained

RVs fit, constraining the masses

Lissauer, Fabrycky, Ford et al. 2011

Lissauer, Fabrycky, Ford et al. 2011

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

12

Kepler telescope's edge-on view of compact planetary system around Sun-like star **PAGE 53**

POLICY **DEEP-SEA** MINING Regulate now to protect hydrothermal vent species PAGE 31

DRUG DISCOVERY TAKING THE LEAD Debating how to keep the pipelines flowing PAGE 42

ADAPTIVE IMMUNITY **EARLY ORIGIN** FOR A 'THYMUS' Gill-based thymoid found in living-fossil lampreys PAGE 90

Image: NASA/Pyle

NATURE.

ATURE

NO

P/P=1.264 ~ 5/4

"Great Inequality" timescale: 1/(4/P-5/P) = 231 days

The orbits are torqued up and down (the periods fluctuate) as the line of conjunctions sweeps passed the lines of apsides.

The Great Inequality is observed!

Kepler-11 parameters

Radius

Mass

Density

Planet

Period

	(days)	(R⊕)	(M⊕)	(g/cm ³)
	10.30375	1.97	4.3	3.1
b	± 0.00016	± 0.19	+2.2,-2.0	+2.1,-1.5
	13.02502	3.15	13.5	2.3
С	± 0.00008	± 0.30	+4.8,-6.1	+1.3,-1.1
	22.68719	3.43	6.1	0.9
d	± 0.00021	± 0.32	+3.1,-1.7	+0.5,-0.3
	31.99590	4.52	8.4	0.5
е	± 0.00028	± 0.43	+2.5,-1.9	+0.2,-0.2
	46.68876	2.61	2.3	0.7
f	± 0.00074	± 0.25	+2.2,-1.2	+0.7,-0.4
	118.37774	3.66		-
g	± 0.00112	± 0.35	< 300	

Duration changes probe Mutual Inclination Miralda-Escude 2002

Lack of precession of Kepler-11e $\rightarrow i_{e-d}$, $i_{e-f} < 2^{\circ}$ at 1- σ

Image: NASA/Pyle

KOI-500

planet	P (days)	Mp(Mearth)
•	· · · ·	
500.05	0.9867790	1.5
500.03	3.0721660	2.2
500.04	4.6453530	4.4
500.01	7.0534780	8.0
500.02	9.5216960	8.5

Ford, Rowe, Fabrycky et al. 2011 Ragozzine, Fabrycky et al. in prep

KOI-730: A Resonant 4-Planet System

P/P=1.33341(3) P/P=1.50157(5) P/P=1.33411(8)

Fabrycky et al., in prep

Disk Migration Theory

Capture into Resonance

Kepler, the Multiple-Transiting Planet Machine

- Multiplanets are now on a firm statistical footing
- New types of planetary systems (extremely compact, multi-resonant)
- Multiple-transits allow for the easy interpretation of transit timing variations (TTV)

KOI-126: A Triply Eclipsing Hierarchical Triple with Two Low-Mass Stars

Carter, Fabrycky, Ragozzine et al. 2011, Science

$$P_1 = 1.77 \text{ d}, P_2 = 33.9 \text{ d}$$

 $i_{mutual} = 9.2^{\circ}$, oscillating by 0.4°

