Planetary Systems from Kepler

Dan Fabrycky UC Santa Cruz

... greatly indebted to the Kepler team!

Radial Velocity Multiple Planets

Resonances

55 Cnc b-c

Name	Msin(i)	Orbital Period mjupiter \pm	Orbital Eccentricity \pm \pm
$\underline{55 \text { Cnc c } \square}$	0.168	44.379	0.05
$\underline{55 \text { Cnc b }} \square$	0.83	14.6513	0.016

Novak, Lai, Lin 2003 see also: Terquem \& Papaloizou 2008

- NASA, photometry of 150,000 stars

Kepler
 Mission

- Looking for Earth-like planets in transit
- ~ 30 ppm in 6 hours; 30 minute cadence
- 120 days are public (+90d this month!)

Kepler finds Multiplanets

(Steffen et al. 2010) Transit search and figures by Jason Rowe

Numbers of multiplanets:
115 doubles, 45 triples, 8 quaduples,
1 quintuple and 1 sextuple
Borucki et al. 2011
Latham, Rowe, Quinn et al. 2011 Lissauer, Ragozzine, Fabrycky et al. 2011

Kepler systems

The Kepler Orrery
 credit: D. Fabrycky
 t[BJD] = 2454965

 (f) $\underbrace{72}_{1307}$

\qquad

$\underbrace{13)^{59}}_{2)^{70}} 448$

1089

1113

433
486
139
881
401

Resonance Preference

Confirming a planetary system

Kepler-9
Holman, Fabrycky et al. 2010

Kepler-9 b-c-d

Time (days)

First
 Impressions

-100001000200030004000
BJD -2454900

Dynamical Model of Transits

1) Use Newton' s equations to integrate a 3-body system.
$\mathbf{r}_{s} \dot{\mathbf{r}}_{s}$
2) Find transit by Newton's method $\mathrm{Or}_{s} \dot{\mathbf{r}}_{s}$
3) Print out times of RV and transit t, , .

Fits to the data obtained

RVs fit, constraining the masses

Kepler-11

Lissauer, Fabrycky, Ford et al. 2011

Kepler-11

Lissauer, Fabrycky, Ford et al. 2011

$$
P / P=1.264 \sim 5 / 4
$$

"Great Inequality" timescale: $1 /(4 / P-5 / P)=231$ days

$$
0
$$

$$
0
$$

$$
0
$$

$$
0
$$

"Great Inequality"
frequency

The orbits are torqued up and down (the periods fluctuate) as the line of conjunctions sweeps passed the lines of apsides.

The Great Inequality is observed!

Kepler-11 parameters

Planet	Period	Radius	Mass	Density
	(days)	$\left(\mathrm{R}_{\oplus}\right)$		$\left(\mathrm{M}_{\oplus}\right)$

Duration changes probe Mutual Inclination

 Miralda-Escude 2002

Lack of precession of Kepler-11e
$\rightarrow i_{\mathrm{e}-\mathrm{d}}, i_{\mathrm{e}-\mathrm{f}}<2^{\circ}$ at $1-\sigma$

Image: NASA/Pyle

KOI-500

planet	P (days)	Mp(Mearth)
500.05	0.9867790	1.5
500.03	3.0721660	2.2
500.04	4.6453530	4.4
500.01	7.0534780	8.0
500.02	9.5216960	8.5

KOI-730: A Resonant 4-Planet System

$P / P=1.33341(3)$
$P / P=1.50157(5)$
$P /=1.33411(8)$

Fabrycky et al., in prep

Disk Migration Theory

Capture into Resonance

Kepler, the Multiple-Transiting Planet Machine

- Multiplanets are now on a firm statistical footing
- New types of planetary systems
(extremely compact, multi-resonant)
- Multiple-transits allow for the easy interpretation of transit timing variations (TTV)

KOI-126: A Triply Eclipsing Hierarchical Triple with Two Low-Mass Stars
 Time $>$

Carter, Fabrycky, Ragozzine et al. 2011, Science

