Global-scale Simulations of Stellar Convection

w/ Browning, Brun, Miesch,Toomre, Vasil, Zweibel

Ben Brown

(CMSO \& NSF AAPF)

SDO optical

SDO X-ray

The Sun, past 2 days

Magnetic Activity in Other Suns

Magnetic Activity in Solar-like Stars

 (Convective

 (Convective

 Envelope)

 Envelope)

 F-M: all magnetically active

Inside the Sun

a

CONVECTION ZONE VERY TURBULENT (depth of 200 Mm) Re ~ 10^{15}

Stratified, Rotating and Magnetic

Anelastic Spherical Harmonic (ASH) Simulations

- Capture 3-D MHD convection at high resolution on massively-
 parallel supercomputers (~1000 processors for ~ 1 year)
- Study turbulent convection interacting with rotation in bulk of solar CZ: $0.72 R-0.97 R$
- Realistic stellar structure
- Simplified physics: perfect gas, radiative diffusivity, compressible, subgrid transport, MHD
- Correct global spherical geometry

Solar convection (Miesch et al. 2008)

Radial Velocities in a solar simulation

(based on Miesch et al. 2008)

Downflows: fast, narrow Upflows: slow, broad

Swirling, vortical convection near polar region

Sweeping cells near equator

Shown near the solar surface (2\%)
Case F

0 days

Rapidly Rotating Suns: Convective Flows

Flows in a very rapidly rotating star

(Period~3d)
2 days
(Brown et al. 2008)

Differential Rotation in Other Stars

Meridional Circulations

Disagreement with expectations

Rapid Rotators

Slow
Spinners

Hot poles
Ro Cold poles
BB flux map with
5-10\%
variation

Strong DR \rightarrow Wreath-building Dynamo

(Brown et al. 2010)

More Turbulent Dynamos: Magnetic Wreaths and Global-scale Reversals

Shortly before
(Brown et al. 2011)
Long after
$5 \Omega_{0}$

Cyclic Activity: Nearly Ubiquitous

Rotation and Turbulence

Cyclic

Rotation and Turbulence

