"Looking for Planets by their Dusty Fingerprints"

Dr. Amaya Moro-Martin
Princeton University

Main sequence stars are commonly surrounded by debris disks, composed of cold far-IR emitting dust presumably generated by a reservoir of undetected dust-producing planetesimals. In debris disks harboring massive planets, the trapping of dust in gravitational resonances with the planet creates a density enhancement in a ring-like structure outside the orbit of the planet, while gravitational scattering with the planet creates a clearing of dust inside the planet's orbit. Massive planets, therefore, can create structure in the dust disk, and the study of this structure can help us survey a range of planetary parameters that are not detected by other methods. The Spitzer Infrared Space Telescope has begun to obtain spatially unresolved spectrophotometric observations of many potentially diverse debris disk systems with embedded planets. In this talk, we will briefly summarize some of these results. In view of these observations we will discuss how the structure carved by massive planets affects the shape of a debris disk's spectral energy distribution (SED), and consequently how the SED may be used to infer the presence and properties of planets. However, we will see that the SED modeling presents some degeneracies that can only be broken if spatially resolved images of the dust disks are obtained.



Tuesday, April 26th
Seminar is to be held at 4:00 PM in the conference room
on the second floor of Dearborn Observatory

Refreshments will be served at 3:30



< < Back to Seminars


Last modified:   /   Designed by -Sylwia-

Department of Physics and Astronomy, Northwestern University
Dearborn Observatory, 2131 Sheridan Road, Evanston, IL 60208-2900
Tel: (847) 491-7650, Fax: (847) 491 3395