Complete transmission spectrum of an exoplanet from UV to IR

F. Pont, D. Sing, R. Gilliland, D. Charbonneau, H. Knutson, J.-M. Désert, A. Lecavelier, N. Gibson, S. Aigrain

HD 189733b prototype non-inflated hot gas giant

Monday, December 19, 2011

HST programmes

STIS low-res UV/visible STIS mid-res visible ACS low-res visible NICMOS low-res IR **NICMOS filters IR** WFC3 low-res IR

Transit spectroscopy

Challenges:

Infrared : complex instrumental systematics

Visible: star spots

Challenges:

Infrared : complex instrumental systematics

Visible: star spots

Challenges:

Infrared : complex instrumental systematics

Visible: star spots

Our runs on HD189733 after Servicing Mission 5 on the HST:

<u>GO-11740 (16 orbits)</u> STIS 3000-5500 Å (Sing et al. 2011) WFC 1-2 μ (Gibson et al. 2011)

<u>GO-11572 (16 orbits)</u> STIS 5893 Å Na (Huitson et al. 2011)

Monday, December 19, 2011

+ re-analysis of NICMOS data (Gibson et al. 2010)

Star spot monitoring

Monitoring of HD189733 over 6 years by G. Henry with APT Gaussian process analysis (see talk by S. Aigrain)

Star spot monitoring

Gaussian process analysis (see talk by S. Aigrain)

Star spot monitoring

Monitoring of HD189733 over 6 years by G. Henry with APT + many spot crossings during Gaussian process analysis (see talk by S. Aigrain) HST measurements

Monday, December 19, 2011

new results with refurbished HST

ACS 600nm-1µ (Pont et al. 2008)

STIS 300-600nm (Sing et al. 2011)

STIS Na-D line (Huitson et al. 2011) **Poster**

Ground (Redfield et al. 2008)

new results with refurbished HST

potassium line

STIS 300-600nm (Sing et al. 2011)

STIS Na-D line (Huitson et al. 2011) **Poster**

Ground (Redfield et al. 2008)

ESSII - 12-16 Sept 2011

8'μ

Rayleigh scattering: slope gives scale height, temperatures

Haze with mixture of silicate grains shows correct behaviour Over >5 scale heights

Visible opacity determines the deposition of stellar energy (Heng, Hayek, Pont, Sing 2011)

Rayleigh scattering: slope gives scale height, temperatures

Haze with mixture of silicate grains shows correct behaviour Over >5 scale heights

Visible opacity determines the deposition of stellar energy (Heng, Hayek, Pont, Sing 2011)

Rayleigh scattering: slope gives scale height, temperatures

Haze with mixture of silicate grains shows correct behaviour Over >5 scale heights

Visible opacity determines the deposition of stellar energy (Heng, Hayek, Pont, Sing 2011)

Rayleigh scattering: slope gives scale height, temperatures

Haze with mixture of silicate grains shows correct behaviour Over >5 scale heights

Visible opacity determines the deposition of stellar energy (Heng, Hayek, Pont, Sing 2011)

Monday, December 19, 2011

Conclusions

A "best-guess" picture of the atmosphere of HD189733b near the limb from HST transit spectroscopy:

Dominated by haze scattering, possibly by silicate grains

Temperature rising above photosphere to ~2000 K thermosphere

Alkali metal abundances far above solar

Photosphere and deposition of heat high in the atmosphere (10-100 mbars)

Conclusions

A "best-guess" picture of the atmosphere of HD189733b near the limb from HST transit spectroscopy:

Dominated by haze scattering, possibly by silicate grains

Temperature rising above photosphere to ~2000 K thermosphere

Alkali metal abundances far above solar

Photosphere and deposition of heat high in the atmosphere (10-100 mbars)

HST Large Programme - 124 orbits ! - to collect STIS transit spectroscopy for ten hot Jupiters

Conclusions

EXOCLIMES 2012

The Diversity of Planetary Atmospheres

January 16-20, 2012 Aspen, Colorado

Sponsors: Aspen Center for Physics

(3)

see you in Aspen!

DATE

