Highly Inclined Planets from Planet-Planet Scattering plus Tidal Damping

Matthew J. Payne

Eric Ford, Aaron Boley

Dept. of Astronomy, University of Florida

Sept 2011, ESS2

Previous Scattering Results Differ

Previous Scattering Results Differ

Nagasawa et al. 2008, 2011

- *a*_{1,*i*} ~ 5.0*au*
- Inner Planet: Solid Line (Double-peaked)
- Fraction *q* < 0.1 au 15% - 35%
- \sim 70% "close-in" planets $i > 40^{\circ}$
- Similar results in 2011

< 3

Previous Scattering Results Differ

Planet-Planet Scattering + Tidal Damping

Inner Planet: Inclination vs. Pericenter at 10⁸ yrs

- $10^3 \times$ Nagasawa ICs ($a_{1,i} \sim 5.0 au$)
- $10^3 \times$ Chatterjee ICs ($a_{1,i} \sim 3.0 au$)
- Similar results
- Even closer results when use scaled pericenter...

< 6 k

Inner Planet: Inclination vs. Pericenter at 10⁸ yrs

- $10^3 \times$ Nagasawa ICs ($a_{1,i} \sim 5.0 au$)
- $10^3 \times$ Chatterjee ICs ($a_{1,i} \sim 3.0 au$)
- Similar results
- Even closer results when use scaled pericenter...

< 同 > < ∃ >

Inner Planet: Inclination vs. Pericenter at 10⁸ yrs

- $10^3 \times$ Nagasawa ICs ($a_{1,i} \sim 5.0 au$)
- 10³ × Chatterjee
 ICs (a_{1,i} ∼ 3.0 au)
- Similar results
- Even closer results when use scaled pericenter...

< 6 k

Chatterjee ICs

5/12

Chatterjee ICs

- Measurements taken at the *end* (10⁸ yrs)
- Simulations have a middle

Interesting Events

 Time of Minimum Pericenter

Distributions differ

Add Tides

Distributions

Tidal model essentially as per Nagasawa et al. 2008

MJP (UF)

Planet-Planet Scattering + Tidal Dampin

Chatterjee ICs

- Measurements taken at the *end* (10⁸ yrs)
- Simulations have a middle

Interesting Events

Time of Minimum
 Pericenter

Distributions differ

• Add Tides

Distributions

Tidal model essentially as per Nagasawa et al. 2008

MJP (UF)

Planet-Planet Scattering + Tidal Dampin

Chatterjee ICs

- Measurements taken at the *end* (10⁸ yrs)
- Simulations have a middle

Interesting Events

- Time of Minimum Pericenter
 - Distributions differ

Tidal model essentially as per Nagasawa et al. 2008

MJP (UF)

Planet-Planet Scattering + Tidal Dampin

Sept 2011 5 / 12

Chatterjee ICs

- Measurements taken at the *end* (10⁸ yrs)
- Simulations have a middle

Interesting Events

- Time of Minimum Pericenter
 - Distributions <u>differ</u>
- Add Tides -

Distributions differ

MJP (UF)

Planet-Planet Scattering + Tidal Damping

Chatterjee ICs

- Measurements taken at the *end* (10^8 yrs)
- Simulations have a middle

- Time of Minimum Pericenter
 - Distributions differ
- Add Tides
 - Distributions differ

MJP (UF)

Hot Jupiters: Broad Inclination Distribution

e & i from Planet-planet scattering Circularized planets can be highly inclined $\sim 70\% i > 40^{\circ}$ $\sim 25\% i > 90^{\circ}$ Inclination Distribution Similar to Nagasawa

Hot Jupiters Rarer than seen in Nagasawa et al 2008

Planet-Planet Scattering Rarely Produces Hot Jupiters

- Nagasawa ICs $(a_{1,i} = 5.0 au)$ more distant than Chatterjee ICs $(a_{1,i} = 3.0 au)$
- Few Hot Jupiters
 Created
- Chatterjee ICs , $f_{q<0.1~au}\sim 5\%$
- Nagasawa ICs , $f_{q<0.1 au} < 1\%$

< 3

< (□) < 三 > (□)

Hot Jupiters are Lonely

If planet-planet scattering is important, nearest neighbor to hot Jupiter...

... is far away \

 ... contains information or ICs

 ... *may* be driven by (planet-planet Kozai Nearest Neighbor to Tidally Circularized Planet

Hot Jupiters are Lonely

If planet-planet scattering is important, nearest neighbor to hot Jupiter...

... is far away

... contains information on ICs

Nearest Neighbor to Tidally Circularized Planet

Hot Jupiters are Lonely

If planet-planet scattering is important, nearest neighbor to hot Jupiter...

- ... is far away
- ... contains information on ICs
- ... *may* be driven by (planet-planet) Kozai

Nearest Neighbor to Tidally Circularized Planet

e & i from Planet-planet scattering

- Circularized planets can be highly inclined
- Distributions shift with pericenter

Current
 Eccentricity
 Observations
 (above e = 0.1)
 Favor Scattering
 from Small
 Semi-Major Axes

RV Planets, e > 0.1, $M_P > 0.1 M_J$

Planet-Planet Scattering + Tidal Dampin

e & i from Planet-planet scattering

- Circularized planets can be highly inclined
- Distributions shift with pericenter

Current
 Eccentricity
 Observations
 (above e = 0.1)
 Favor Scattering
 from Small
 Semi-Major Axes

RV Planets, e > 0.1, $M_P > 0.1 M_J$

Planet-Planet Scattering + Tidal Dampin

< 回 > < 回 > < 回 >

e & i from Planet-planet scattering

- Circularized planets can be highly inclined
- Distributions shift with pericenter
- Current Eccentricity Observations (above e = 0.1) Favor Scattering from Small Semi-Major Axes

RV Planets, e > 0.1, $M_P > 0.1 M_J$

Planet-Planet Scattering + Tidal Damping

< 3

e & i from Planet-planet scattering

- Circularized planets can be highly inclined
- Distributions shift with pericenter
- Current Eccentricity Observations (above e = 0.1) Favor Scattering from Small Semi-Major Axes

RV Planets, e > 0.1, $M_P > 0.1 M_J$

Planet-Planet Scattering + Tidal Damping

e & i from Planet-planet scattering

- Circularized planets can be highly inclined
- Distributions shift with pericenter
- Current Eccentricity Observations (above e = 0.1) Favor Scattering from Small Semi-Major Axes

RV Planets, e > 0.1, $M_P > 0.1 M_J$

e & i from Planet-planet scattering

- Circularized planets can be highly inclined
- Distributions shift with pericenter
- Current Eccentricity Observations (above e = 0.1) Favor Scattering from Small Semi-Major Axes

RV Planets, e > 0.1, $M_P > 0.1 M_J$

4 Th

Summary

- Agreement...
 - As in Nagasawa et al. 2008 (& 2011), ~ 70% of Hot Jupiters from scattering have i > 40°
- Disagreement...
 - ► Fraction scattered to q < 0.1 and circularized is much smaller than Nagasawa et al 2008: ~ 1 – 5%
 - Each Hot Jupiter Implies Numerous Scattered Systems which have Not Circularized
- Hot Jupiters...
 - Many High Inclinations
 - Nearest neighbors are distant, but give information on ICs
- Eccentricity & Inclination Distributions
 - ► Fixed ICs (semi-major axis) ⇒ Lower < e > & < i > at larger pericenters
 - ► Current RV Observations Support Trend & Favor Scattering from ICs with $a_{1,i} = 1 3 au$

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Fin

Sept 2011 11 / 12

◆□> ◆圖> ◆注> ◆注> 「注」

Additional / Back-up