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Effects of tidal dissipation

Dissipation in the star :

● orbital decay

● spin-orbit alignment } in most cases

Dissipation in the planet :

● spin synchronization

● orbital circularization

● heating

● determine the rates of these processes

body is forced by a potential                                       ?

(depends on frequency     and quantum numbers        )

● how much dissipation (or torque) is produced when a

ω l,m

∝ rlY m
l (θ, φ) exp(−iωt)

Tidal theory :
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Tides in convective regions of planets and stars

● Turbulent viscosity acting on tidal bulge?

● Excitation and dissipation of inertial waves?

convective 

radiative

radiative

convective

heavy elements

late-type star early-type star giant planet

(?)

(?)

[ For radiative regions see poster 34.03 by Adrian Barker ]
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Linear tides in barotropic fluid bodies

● Barotropic : no stable stratification or internal gravity waves

● Low-frequency tides in slowly rotating bodies :

ω ∼ Ω ∼ �

�
GM

R3

�1/2

, �� 1

● Systematic theory based on expansion in powers of �2

● Displacement ξ = ξnw + ξw

● Non-wavelike part :

response of spherical body to tidal potential neglecting Coriolis

● Wavelike part :

(easily computed but different from classical equilibrium tide)

residual response (inertial waves)

known body force from Coriolis force on non-wavelike part
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Periodic forcing of inertial waves

● Consider inertial waves driven by body force ∝ exp(−iωt)

● Calculate linear response with same frequency

deriving from tidal potential ∝ rlY m
l (θ, φ) exp(−iωt)

Ogilvie & Lin (2004)

Ogilvie & Lin (2007)

Goodman & Lackner (2009)

Wu (2005)

Ivanov & Papaloizou (2007, 2010)

Ogilvie (2009)

Rieutord & Valdettaro (2010)

Selected references :
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Idealized problem : isentropic rotating fluid in spherical geometry

● Rigid core, fractional radius 0.5

Typical results

decreasing
viscosity

l = m = 2
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Typical results

● Caveats :

● reflections

● nonlinear breakdown

● convective background

● magnetic fields
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Impulsive forcing of inertial waves

● Consider inertial waves driven by body force

● Impulsive response is smooth and readily computable (ODEs)

∝ δ(t)

● Will subsequently resolve into complicated pattern of inertial waves

● (Kinetic) energy of impulsive response gives a broad frequency

average of the response function

● Robust result, dependent only on gross structure

which may dissipate through linear or nonlinear processes

● Also more directly applicable to highly eccentric orbits

● Equivalent to frequency-average of tidal time lag, or
1

ωQ
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● Homogeneous fluid body with rigid core

● Sectoral harmonics m = l

Ê ∝ α2l+1

1− α2l+1
α =

rin

R

● Tesseral harmonics m < l

Ê ∝ 1
1− α2l+1

(+ term as above)

Impulsive energy transfer / frequency-averaged dissipation

but beware trivial inertial modes with l = 2
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● Two homogeneous fluids
ρ1

ρ2

● Similar but weaker result

● Strengthened if densities differ greatly

● Homogeneous fluid body with rigid core

● Sectoral harmonics m = l

Ê ∝ α2l+1

1− α2l+1
α =

rin

R

● Tesseral harmonics m < l

Ê ∝ 1
1− α2l+1

(+ term as above)

Impulsive energy transfer / frequency-averaged dissipation

but beware trivial inertial modes with l = 2
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Impulsive energy transfer / frequency-averaged dissipation

● Polytrope with rigid core

n = 0 (homogeneous)

n = 1

n = 3

n = 0.3

n = 0.1
∝ r5

in

l = m = 2

p ∝ ρ1+1/n

Ê
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Effective viscosity of turbulent convection

● How does a convecting fluid respond to periodic distortion?

● Oscillatory shearing box

a sin(ωt)
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Effective viscosity of turbulent convection

● Compute convective or other flow in OSB

● Measure Reynolds stress at

a sin(ωt)

frequency ω
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Previous hypotheses and results

● Zahn (1966) : viscosity             (large eddies)∝ ω−1

● Goldreich & Nicholson (1977) : viscosity             (small eddies) 

● Goodman & Oh (1997) : viscosity                 (small eddies) 

∝ ω−2

∝ ω−5/3

● Penev et al. (2009) : viscosity ∝ ω−1
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Convection in an oscillatory shearing box (Geoffroy Lesur)
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Convection in an oscillatory shearing box (Geoffroy Lesur)
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● Time series of Reynolds stress (shear stress)
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Convection in an oscillatory shearing box (Geoffroy Lesur)
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● Fourier transform of Reynolds stress (shear stress)
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Convection in an oscillatory shearing box (Geoffroy Lesur)
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● Real part of effective viscosity versus tidal frequency

numerical simulation
closure model

(dashed : negative)

∝ ω−2

uncertainty
due to noise

Monday, December 19, 2011



!"
"

!"
!

!"
!#

!"
!$

!

!
%
&
'
"
(
)

Convection in an oscillatory shearing box (Geoffroy Lesur)

● Imaginary part of effective viscosity versus tidal frequency

numerical simulation
closure model

∝ ω−1
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Analytical results for high-frequency shear

● Dominant response is elastic

● Next effect is viscosity ∝ ω−2

Tidal period      flow timescales (relevant for large eddies)�

● Coefficients may be positive, negative or zero depending on

flow statistics, anisotropy, etc.

● Incompatible with Zahn (1966)

● Different from Goldreich & Nicholson (1977), Goodman & Oh (1997)

General flow (laminar, turbulent, convective, ... )

● Different from Penev et al. (2009)

● Raises the possibility of tidal anti-dissipation
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Conclusions

● Idealized response (inertial waves) is highly frequency-dependent

● For                    dissipation is most efficient for :l = m = 2

● larger, more rigid or denser cores

● greater density stratification (larger polytropic index)

● Other (tesseral) harmonics excite richer response and may be

● Frequency-averaged dissipation is robust and readily calculated

● High-frequency tidal response of convection (and other flows) is :

● elastic (+, − or 0)

● viscous (+, − or 0),                 and therefore small

● anisotropic

important even though intrinsically weaker

ν ∝ ω−2

● More work required for stellar or planetary application
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