

and SEEDS/HiCIAO/AO188 teams

Outline

- Background and Motivation
 - How to constrain migration mechanisms via direct imaging
- Direct imaging of transiting planetary systems
 - Introduction of the SEEDS project and targets
- Early Results
 - 1st epoch summary of 10 systems
 - Cases for HAT-P-7 and HAT-P-11
- Conclusion and Summary

Various Migration Models

- consider gravitational interaction between
 - √ disk-planet (disk-planet interaction models)
 - e.g., Ida & Lin papers
 - ✓ planet-planet (planet-planet scattering models)
 - e.g., Chatterjee et al. 2008, Nagasawa et al. 2008
 - ✓ planet-binary companion (Kozai migration)
 - e.g., Wu & Murray 2003, Fabrycky & Tremaine 2007
- ◆ How can we discriminate those models by observations?

Diagnostics to discriminate migration models

small eccentricity and obliquity disk-planet interaction

orbital eccentricity by radial velocity

spin-orbit alignment angle by the RM effect

large eccentricity or obliquity

planet-planet scattering
Kozai migration

Two Models Need Outer Massive Body

Can we discriminate two models?

Planet-Planet scattering

Additional information from direct imaging!

Kozai migration

Search for outer massive bodies is important to constrain migration mechanisms for each system

SEEDS Project

- ◆ SEEDS: Strategic Exploration of Exoplanets and Disks with Subaru
- ◆ First "Subaru Strategic Observations" PI: Motohide Tamura
- Using Subaru's new instruments: HiClAO & AO188
- total 120 nights over 5 years (10 semesters) with Subaru
- ✓ Direct imaging and census of giant planets and brown dwarfs around solar-type stars in the outer regions (a few 40 AU)
- ✓ Exploring proto-planetary disks and debris disks for origin of their diversity and evolution at the same radial regions

SEEDS-RV Sub-category

- ◆ Members: N. Narita, Y. Takahashi, B. Sato, R. Suzuki
- ◆ Targets: Known planetary systems such as,
 - ✓ Very famous systems
 - ✓ long-term RV trend systems
 - ✓ Giant systems
 - ✓ Eccentric planetary systems
 - ✓ Transiting planetary systems (including eccentric/tilted systems)
- 25+ systems observed
 - ✓ including 10+ transiting planetary systems (1st epoch)
 - ✓ some follow-up targets were observed (2nd epoch)

First/Second Year Targets

- We focused on tilted and eccentric transiting planetary systems
 - ✓ HAT-P-7
 - **✓** HAT-P-11
 - ✓ other 8 systems (sorry, still anonymous)
- Here I present a summary of early results and 2 cases with 2nd epoch observations

First/Second Year Results

- 9 out of 10 systems have companion candidates
 - √ high frequency of detecting candidate companions
 - ✓ Caution: this is only 1 epoch -> follow-up needed
- Message to transit/secondary eclipse observers
 - ✓ Be careful about contamination of candidate companions, even they are not real binary companions
 - ✓ sometimes they may affect your results
- 2nd epoch observations are ongoing
 - ✓ e.g., HAT-P-7 and HAT-P-11

First Application: HAT-P-7

not eccentric, but retrograde (NN+ 2009, Winn et al. 2009)

very interesting target for direct imaging observation

Possible additional planet 'HAT-P-7c'

Long-term RV trend ~20 m/s/yr is ongoing from 2007 to 2010

constraint on the mass and semi-major axis of 'c'

$$\frac{M_c \sin i_c^2}{a_c} \sim (0.121 \pm 0.014) \ M_{Jup} \ {\rm AU^{-2}}$$
 (Winn et al. 2009)

Additional Body Restricts Kozai migration

Summary for the HAT-P-7 case

- We detected two binary candidates and one is confirmed as a CPM companion
- ◆ BUT the Kozai migration was excluded in the presence of the additional body
- planet-planet scattering appears plausible

Summary for the HAT-P-11 case

- ◆ We detected several companion candidates in 1st epoch
- ◆ 2nd epoch follow-up suggests they are not a real companion
- planet-planet scattering appears plausible

Conclusions

- Direct imaging for known planetary systems is important
 - ✓ Presence of binary companions are sometimes overlooked
 - ✓ We can constrain migration mechanism for each system
- We found high frequency of detecting candidate companions
 - ✓ Caution: this is only 1 epoch
 - ✓ Further follow-up observations are important
- ◆ Be careful for contamination of companion candidates
 - ✓ Depth of transit/secondary eclipse may be affected, even they are not real companions

If you are a Subaru referee...

Subaru Telescope National Astronomical Observatory of Japan Application Form for Telescope	Semester S12A
1. Title of Proposal	
Confirmations of the binary nature of known planetary systems	
2. Principal Investigator	
Name: Takahashi Yasuhiro	
Institute: Univ. of Tokyo	
Mailing Address: 2-21-1 Osawa, Mitaka, Tokyo, JAPAN	
E-mail Address: yasuhiro.takahashi@nao.ac.jp Phone:	+81-422-34-3528
3. Scientific Category	
Solar System	Star and Planet Formation
Compact Objects and SNe Milky Way Local Group	ISM
Nearby Galaxies AGN and QSO Activity QSO Abs. Lines and IC	GM Clusters of Galaxies
Large-Scale Structure Gravitational Lenses High-z Galaxies	Cosmological Parameters
Miscellaneous	

Please keep in mind!