Core Accretion at Wide Separations: The Critical Role of Gas

Ruth Murray-Clay

Harvard-Smithsonian Center for Astrophysics Kaitlin Kratter, Hagai Perets, Andrew Youdin

Wide separation gas giants/brown dwarfs/disk fragments exist

Fomalhaut

HR 8799

Kratter, Murray-Clay, & Youdin, ApJ (2010)

If this occurs, more brown dwarfs or even M stars should be found at 50–150 AU around A stars.

Kratter, Murray-Clay, & Youdin, ApJ (2010)

If this occurs, more brown dwarfs or even M stars should be found at 50–150 AU around A stars.

Kratter, Murray-Clay, & Youdin, ApJ (2010)

If this occurs, more brown dwarfs or even M stars should be found at 50–150 AU around A stars.

Kratter, Murray-Clay, & Youdin, ApJ (2010)

If this occurs, more brown dwarfs or even M stars should be found at 50–150 AU around A stars.

Core Accretion at Large Separations

doesn't work if:

↑z

 $R_{accrete}$ given by gravitational focusing onto R_{core} given velocity v_H

Gas can help

Wind Shearing (WISH)

"Binary Capture"

dissipation due to interaction with gas

Murray-Clay & Perets (in prep) (see also Ormel & Klahr 2010)

Decoupling at the Atmosphere

+ gravitational focusing into the atmosphere

capture by the atmosphere only if the small particle can decouple from the exterior gas

Decoupling at the Atmosphere

+ gravitational focusing into the atmosphere

Gravitational focusing just needs to get the small body to the atmosphere

We have numerically validated our expressions

We have numerically validated our expressions

$\alpha = 0.01$

Growth times at 70 AU can be short enough to nucleate an atmosphere

Growth times at 70 AU can be short enough to nucleate an atmosphere

Growth times at 70 AU can be short enough to nucleate an atmosphere

Summary: Cores can grow quickly in gas, even at wide separations

- Wind shearing (WISH)
- "Binary capture"
- gravitational focusing into the Bondi radius
- decoupling at the planet's atmosphere