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1     Model

Core accretion + disk evolution + migration



Upgraded planet model

Simple three layer differentiated planet model:
-iron/nickel, silicates, and if accretion at a>asnow 
ices. EOS from Seager+ 2007
-Includes effect of external pressure (cores).
-Core luminosity from radioactive decay, 
assuming chondritic composition.

Variable core density                                                             
1/3 iron, 2/3 silicate
100 % ice
Giant planet cores

-Simple, grey atmosphere

Theory of planet formation and comparison with observation 7

where A is the albedo (assumed to be the same as for Jupiter) and
g = GM/R2, and for the luminosity we still have l(R) = Lint.

Evolutionary (or isolated) phase

The last phase starts when the gaseous disk disappears so that the
planet evolves at constant mass (we neglect evaporation, as the minimal
allowed semimajor axis a is 0.1 AU in the synthesis). During this phase,
we use simple standard stellar boundary conditions in the Eddington
approximation and write (e.g. Chandrasekhar 1939)
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and l(R) = Lint which is now also equal the total luminosity L. It
is clear that the long term evolution is described in a much simpler
way than in the Burrows et al. (1997, hereafter BM97) or Baraffe
et al. (2003, hereafter BC03) models which employ proper non-gray
atmospheres (see Chabrier & Baraffe 1997). We have however found
that the general agreement in terms of total luminosity or radius is
good (cf. sections 3. and 4.), with discrepancies of about a factor two
in L and ≤ 10% in R, sufficient for our purpose of population synthesis.

3. Formation of Jupiter

The formation of Jupiter is of particular importance as a benchmark
for all giant planet formation models. This is because for no other giant
planet an equally high number of detailed observational constraints ex-
ist. Figure 1 shows the formation of Jupiter in our baseline formation
simulation (nJ6), using the equations presented in the previous section.

The initial conditions for this simulation mimic J6 in P96 which in
particular means that the initial planetesimal surface density Σp is 10
g/cm3, and that the grain opacities are 2 % of the interstellar value. It is
clear that the two simulation still cannot yield exactly identical results,
as they differ in some other aspects, like the variable core density and the
inclusion of planetesimal ejection in this work, or a different equation
of state.

The simulation shown here is strongly simplified in comparison to
the calculations used in the synthesis: In the full model the onset of
limited gas accretion (and thus the detachment) as well as the final
mass of the planet results in a self-consistent way from the evolution of
the gaseous disk (Alibert et al. 2005). Here, the evolution of the disk is
switched off. Instead, we fix the maximal allowed ṀXY to 10−3M⊕/yr, a

- Gas opacities from Freedman+ 2008
-Gives radius and luminosity at any 
moment, inkl. collapse (Lissauer+ 2009)

4.6 Gyr:
0.99 RJ

1 MJ

Total

Core

Capture

Coupled long term evolution                                                             

1 MJ

4.6 Gyr:
1.13 LJ

dotted: Burrows+97
dashed: Baraffe+03Cf.  Seager+ 2007, Fortney

+2007, Valencia+ 2006-2011



Upgraded disk & migration model
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The boundary conditions for this part of the calculation are
the same as in PT99, formally,

T (z = H) = T (τab, Tb, r, Ṁst,α), (4)

P(z = H) =
Ω2Hτab

κ(T (z = H), P(z = H))
, (5)

F(z = H) =
3

8π
ṀstΩ

2, (6)

and

F(z = 0) = 0. (7)

These conditions depend on three parameters: τab the optical
depth between the surface of the disc (z = H) and infinity,
Tb the background temperature, and Ṁst the equilibrium accre-
tion rate defined by Ṁst ≡ 3πν̃Σ where Σ ≡

∫ H

−H
ρdz is the usual

surface density, and ν̃ ≡
∫ H

−H νρdz/Σ. The values for τab and
Tb are the same as in PT99 (namely 10−2 and 10 K); the steady-
state accretion rate is a free parameter. As shown in PT99, the
structure obtained hardly varies with the first two parameters.

This system of 3 equations with 4 boundary conditions has
in general no solution, except for a certain value of H. This
value is found iteratively: Eqs. (1)–(3) are numerically inte-
grated from z = H to z = 0, using a fifth-order Runge-Kutta
method with adaptive step length (Press et al. 1992) until
F(z = 0) = 0 to a given accuracy.

Using this procedure, we calculate, for each distance to the
star r and each value of the equilibrium accretion rate Ṁst, the
distributions of pressure, temperature and density T (z; r, Ṁst),
P(z; r, Ṁst), ρ(z; r, Ṁst).

Using these distributions, we finally calculate the mid-
plane temperature (Tmid) and pressure (Pmid), as well as
the effective viscosity ν̃(r, Ṁst), the disc density scale height
H̃(r, Ṁst) defined by ρ(z = H̃) = e−1/2ρ(z = 0). The surface
density Σ(r, Ṁst) is also given as a function of Ṁst (for each
radius). By inverting this former relation, we finally obtain re-
lations Tmid(r,Σ), Pmid(r,Σ), ν̃(r,Σ) and H̃(r,Σ) for each value
of r (and each value of the other parameters α, τab and Tb).

2.1.2. Evolution of the surface density

The time evolution of the disc is governed by the well-known
diffusion equation (Lynden-Bell & Pringle 1974):

dΣ
dt
=

3
r
∂

∂r

[
r1/2 ∂

∂r
(ν̃Σr1/2)

]
=

1
r
∂

∂r
(rJ(r)) , (8)

where J(r) ≡ 3
r1/2

∂
∂r (ν̃Σr1/2) is the mass flux (integrated over the

vertical axis z). This equation is modified to take into account
the momentum transfer between the planet and the disc, as well
as the effect of photo-evaporation and accretion onto the planet:

dΣ
dt
=

3
r
∂

∂r

[
r1/2 ∂

∂r
ν̃Σr1/2 + Λ(r)

]
+ Σ̇w(r) + Q̇planet(r). (9)

The rate of momentum transfer Λ between the planet and
the disc is calculated using the formula derived by Lin &
Papaloizou (1986):

Λ(r) =
fΛ
2r

√
GMstar

(
Mplanet

Mstar

)2 ( r

max(|r − a|, H̃)

)4
, (10)

where a is the sun-planet distance and fΛ is a numerical con-
stant1. The photo-evaporation term Σ̇w is given by (Veras &
Armitage 2004):
{
Σ̇w = 0 for R < Rg,
Σ̇w ∝ R−1 for R > Rg,

(11)

where Rg is usually taken to be 5 AU, and the total mass loss
due to photo-evaporation is a free parameter. Finally, a sink
term Q̇planet is included in Eq. (9), to take into account the
amount of gas accreted by the planet. This term is generally
negligible compared to the other ones, except during the run-
away phases.

To solve the diffusion Eq. (9) we need to specify two
boundary conditions. The first one is given at the outer radius
of the disc (in our simulations this radius is usually taken at
50 AU). At this radius, one can either give the surface density
Σ or its temporal derivative. Since the characteristic evolution
time of the disc is the diffusion timescale

Tν ∝
r2

ν̃
∝ 1
αΩ

( r
H

)2
, (12)

which2 is proportional to r3/2 for discs of approximately con-
stant aspect ratio (which is the case in these models, see PT99)
the outer boundary condition has little influence.

The second condition is specified at the inner radius where
we have used the following condition:

r
∂ν̃Σ

∂r

∣∣∣∣∣∣
inner radius

= 0. (13)

Since the total mass flux through a cylinder of radius r is given
by:

Φ(r) ≡ 2πrJ(r) = 3πν̃Σ + 6πr
∂ν̃Σ

∂r
, (14)

the boundary condition Eq. (13) can be expressed as:

Φ(r)
∣∣∣∣
inner radius

= 3πν̃Σ = Ṁst, (15)

i.e. the mass flux through the inner radius is equal to the equi-
librium flux. Therefore, this condition is equivalent to say that
the inner disc instantaneously adapt itself to the conditions
given by the outer disc. As discussed in PT99, this is consistent
with the expression of the characteristic timescale as a function
of the radius (Eq. (12)).

2.2. Migration rate

Dynamical tidal interactions of the growing protoplanet with
the disc lead to two phenomena: inward migration and gap
formation (Lin & Papaloizou 1979, Ward 1997, Tanaka et al.
2002). For low mass planets, the tidal interaction is linear, and

1 In this formula, the disc scale height H̃ is the scale height of the
unperturbed disc, and not the scale height in the middle of the gap.

2 The second part of Eq. (12) is obtained by expressing Eq. (1) as
1
ρ

P
H ∼ Ω2H and then replacing the sound velocity by ΩH in the defi-

nition of ν.
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Viscosity, photoevaporation, planet accretion.
New: 
-stellar irradiation
-external photoevaporation Matsuyama+ 2003

-internal photoevaporation Clarke+ 2001

-updated initial profile  Andrews+ 2009

Disk gas surface density (1+1D α model) Non-isothermal type I migration

 (Kley & Crida 2008, Kley et al. 2009, Paardekooper et al. 
2010, Baruteau & Lin 2010, Bitsch et al. 2011...)
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1I     Population synthesis

Vary initial conditions of formation model according to 
observed distributions of metallicity, disk mass and 
disk lifetime. 



Formation tracks - 
                       Kepler comparison

Nominal Model. 
Updated Type I.

No efficiency factor for type I ! 

Mstar=1Msun, Memb,0=0.6 Mearth, irradiated disk, viscosity alpha=7x10-3

Isothermal Type I.
Tanaka f1=0.01

Almost no type I migration.

Kepler: 33%
Model: 32%
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T=5x109 yrs

•Generally good agreement: 
•Increase towards small radii.
•Many low radii.
•Hot Jupiter 0.5-1%
•Even in absolute fraction.

But no bimodality...!

Kepler: 33%
Model: 16%
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Planet Occurrence from Kepler 11

Lissauer et al. (2011b) noted that the multi-planet sys-
tems observed by Kepler have relatively low mutual incli-
nations (typically a few degrees) suggesting a significant
correlation of inclinations. Converting our measurements
of the mean number of planets per star to the fraction of
stars having at least one planet requires an understand-
ing of the underlying multiplicity and inclination distri-
butions. Such an analysis is attempted by Lissauer et al.
(2011b), but is beyond the scope of this paper.
It is worth identifying additional sources of error and

simplifying assumptions in our methods. The largest
source of error stems directly from 35% rms uncertainty
in R! from the KIC, which propagates directly to 35%
uncertainty in Rp. We assumed a central transit over
the full stellar diameter in equation (2). For randomly
distributed transiting orientations, the average duration
is reduced to π/4 times the duration of a central transit.
Thus, this correction reduces our SNR in equation (1) by
a factor of

√

π/4, i.e. a true signal-to-noise ratio thresh-
old of 8.8 instead of 10.0. This is still a very conservative
detection threshold. Additionally, our method does not
account for the small fraction of transits that are graz-
ing and have reduced significance. We assumed perfect√
t scaling for σCDPP values computed for 3 hr intervals.

This may underestimate σCDPP for a 6 hr interval (ap-
proximately the duration of a P = 50 day transit) by
∼10%. These are minor corrections and affect the nu-
merator and denominator of equation (2) nearly equally.

3.1. Occurrence as a Function of Planet Radius

Planet occurrence varies by three orders of magnitude
in the radius-period plane (Figure 4). To isolate the de-
pendence on these parameters, we first considered planet
occurrence as a function of planet radius, marginalizing
over all planets with P < 50 days. We computed oc-
currence using equation (2) for cells with the ranges of
radii in Figure 4 but for all periods less than 50 days.
This is equivalent to summing the occurrence values in
Figure 4 along rows of cells to obtain the occurrence for
all planets in a radius interval with P < 50 days. The
resulting distribution of planet radii (Figure 5) increases
substantially with decreasing Rp.
We modeled this distribution of planet occurrence with

planet radius as a power law of the form

df(R)

d logR
= kRR

α. (4)

Here df(R)/d logR is the mean number of planets hav-
ing P < 50 days per star in a log10 radius interval cen-
tered on R (in R⊕), kR is a normalization constant, and
α is the power law exponent. To estimate these param-
eters, we used measurements from the 2–22.7 R⊕ bins
because of incompleteness at smaller radii and a lack of
planets at larger radii. We fit equation (4) using a max-
imum likelihood method (Johnson et al. 2010). Each ra-
dius interval contains an estimate of the planet fraction,
Fi = df(Ri)/d logR, based on a number of planet de-
tections made from among an effective number of target
stars, such that the probability of Fi is given by the bi-
nomial distribution

p(Fi|npl, nnd) = F
npl

i (1 − Fi)
nnd (5)

where npl is the number of planets detected in a spec-
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Fig. 5.— Planet occurrence as a function of planet radius for
planets with P < 50 days (black filled circles and histogram). The
top and bottom panels show the same planet occurrence measure-
ments on logarithmic and linear scales. Only GK stars consistent
with the selection criteria in Table 1 were used to compute occur-
rence. These measurements are the sum of occurrence values along
rows in Figure 4. Estimates of planet occurrence are incomplete
in the hatched region (Rp < 2 R⊕). Error bars indicate statistical
uncertainties and do not include systematic effects, which are par-
ticularly important for Rp < 2 R⊕. No planets with radii of 22.6–
32 R⊕ were detected (see top row of cells in Figure 4). A power law
fit to occurrence measurements for Rp = 2–22.6 R⊕ (red filled cir-
cles and dashed line) demonstrates that close-in planet occurrence
increases substantially with decreasing planet radius.

ified radius interval (marginalized over period, nnd ≡
npl/fcell − npl is the effective number of non-detections
per radius interval, and fcell is the estimate of planet oc-
currence over the marginalized radius interval obtained
from equation (2). The planet fraction varies as a func-
tion of the mean planet radius Rp,i in each bin, and the
best-fitting parameters can be obtained by maximizing
the probability of all bins using the model in equation
(4):

L =
nbin
∏

i=1

p(F (Rp,i)). (6)

In practice the likelihood becomes vanishingly small away
from the best-fitting parameters, so we evaluate the log-
arithm of the likelihood

lnL=
nbin
∑

i=1

ln p(F (Rp,i)) (7)

Howard et al. 2011

•Diversity!
•Can form both giant planets and 
close-in low mass planets.
•Migration still too rapid (giants). 
•Imprint of convergence zones.

P<50 days P<50 days 



Preliminary results

Luminosity of young Jupiters revisited

• Hot start: Start with fully formed planet, at (arbitrarily) large luminosity 
(entropy) and radius. Outcome of direct collapse / disk instability (?). 

• Cold start: Gradually build up planet (core accretion). Accrete gas 
through accretion shock. Radiative loss of gravitational potential energy 
liberated at the shock. Lower initial luminosity and radius.

Use updated model to revisit luminosity of young Jupiters. Same model 
as normally used for population synthesis. Also as illustration that 
population synthesis formation model contains quite some physics.

Currently known direct imaging planets are 
better reproduced by hot start models.Janson et al. 2011



New cold start models

•Initial conditions like J1 in Pollack+ 
1996. 1, 2, 5, 10 MJ. In situ. Ṁmax=0.01 
Me/yr. Low grain opacity.

•ALL accretional luminosity 
radiated away at the shock.

•As in Marley+ 2007, low L at 
end of formation. But some-
what higher L => see below. 

•Accretion of low entropy 
material.

M07

Marley, Fortney,Hubicky, 
Bodenheimer, Lissauer 07

Unique?
Dependence on 

parameters?

Preliminary results



Luminosity is a strong function of the 
gas accretion rate

•High gas accretion rate => high luminosity: almost 2 orders of magnitude difference.
•Accretion timescale vs. contraction timescale
•taccr<<tcont (high Ṁmax): high fraction of mass already accreted while the planet is still big. 
Less low entropy matter accreted through the shock.
•The higher Ṁmax, the closer we get to the hot start model which (formally) has a 
vanishing or very small taccr.

Gas accretion rate in runaway phase: given by disk (no more planet). Can vary!
In full model, Ṁmax calculated self consistently from disk model.
Here: Consider planet with final mass 10 MJ, with Ṁmax 0.1, 0.01 and 0.001 Me/yr. 

0.1 Me/yr
0.01 Me/yr
0.001 Me/yr

10 MJ
“Fork” diagram of initial specific 
entropies. High s => high L.

Clear Ṁmax dependence.

T=0 Myrs (post accretion)

Spiegel & Burrows ‘11Marley+07

Preliminary results



Luminosity is a function of the 
core mass I
Planetesimal surface density: The higher, the shorter time till runaway and the larger Mcore.
10 MJ, Initial planetesimal surface density Σp,0: 10, 15, 20 g/cm2. Ṁmax = 10-2 Me/yr

•During approach to runaway, Lcore is a non-negligible contribution. Later decrease (Rcapt).
•Matter contained in envelope when collapse starts is at higher entropy for higher Lcore. 
Larger initial R => weaker shock => less radiative loss => difference gets bigger. (self 
sustaining process). Different Mcore explains also difference to Marley+2007.
•Caveats: depends on planetesimal random velocity & planetesimal-protoplanetary 
envelope interaction. No dependence of opacity on Σp,0 included here (cf Spiegel & Burrows 2011).

Initial 
specific 
entropy 
clearly 
depends 
on Mcore.

New effect.

T=0 Myrs (post 
accretion)10 => Mcore  33 Me

15 => Mcore   49 Me

20 => Mcore   65 Me

Solid: total L 
Dotted: intrinsic  L 
Dashed: core L

Preliminary results



Luminosity is a strong function of the 
core mass II: L (t, M, Mcore)

Very large differences in luminosity for higher mass planets 
depending on core mass, remaining up to 108 years. Again, 
there is no such thing as one unique “cold start” luminosity.

Red line: Hot start

Other lines, cold start 
with different Σp,0  
and thus Mcore

Hot start and cold 
start with massive 
core identical after 
1 to 10 Myrs. 

Planets with 
Mcore>100 Me do 
exist (Leconte et 
al. 2010).

Preliminary results



(Preliminary) Conclusion

It is impossible to derive the formation mechanism 
or the mass from measuring the luminosity by 

direct imaging.

L can be anything.

Really?

Bring back in population synthesis!



Core Accretion is hot

Final conclusion from 
pop. synth.

Core accretion leads to 
L almost as high as 

Hot Start. Mz!40 Me. 
At least from this point, 

CA reproduces also 
planets at large 

distances. It leads to a 
relatively well defined 

M-L relation.

Nominal population 
Mstar=1 M⊙

alpha=7x10-3

a>0.3 AU

classical cold start

cold start

classical cold start



Summary
•Presented upgraded core accretion model combining self-
consistently formation and evolution.

•Allows characterization of planets in mass, semimajor axis, 
composition, radius and luminosity from tiny embryo to Gyr old planet.

•Updated type I migration rates allow to obtain populations with a 
radius distribution similar as observed by Kepler without scaling 
factors. Giant planets however get still too close.

•Core accretion leads to post formation luminosities almost as high as 
in the “hot start” scenario. No clear difference to direct collapse model. 
On the other hand, L(M) is quite well defined.

•The model allows population synthesis results to be compared 
directly with RV, transits and direct imaging (and microlensing). This 
combination is the key to better understanding planet formation.


