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What do we know about 
planets in star clusters?

• Few observed planets in star clusters

• Planet around giant ε Tauri in Hyades (Bunéi et al. 2007)

• Null results in 47tuc (Gilliland et al. 2000, Weldrake et al. 2005)

• Pulsar planets in M4 (e.g., Backer 1993; Thorsett et al. 1999)

• Possible explanations

• Metallicity vs planet-occurrence correlation

• Stellar dynamics
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Do planets form around cluster stars at the 
same rate as they do around field stars?
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Open Star Clusters in Kepler Field
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Open Cluster NGC6791 in 
Kepler Field of View

• Super-Solar metallicity: Fe/H = 0.3

• High stellar number

• Low-density compared to typical GGCs

• In the field of view of Kepler

Property Typical GC NGC6791

Mass (M⊙)

Central Density 
(M⊙pc-3)

1x105 5x103

1x104 30
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• Modeling star clusters using a Hénon-type Monte Carlo code “CMC”

• Two-body relaxation (Joshi, Rasio, & Portegies Zwart 2000)

• Single and binary stellar evolution (Chatterjee et al. 2010)

• Strong interactions including physical collisions and binary mediated 
interactions (Fregeau & Rasio 2007)

• Galactic tidal stripping (Joshi, Nave, & Rasio 2001; recently updated in Chatterjee et al. 2010)

• Large ranges of initial mass, compactness (w0), initial binary fraction (fb) are 
explored

• A typical Galactic GC

• NGC6791: Open cluster in the Kepler field of view

Method
Hénon-type Monte Carlo Cluster Evolution Code
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Best fit parameters out 
of ~200 models:

• Ni = 5 x 104

• w0 = 5

• rv = 8 pc

• Rg = 10 Kpc

• fb = 0.1

• fp = 0.33
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Semimajor axis 
distribution is mostly 
unchanged even for 

a ~ 100 AU
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Effects of Stellar Dynamics oN 
Planetary Orbits

a & e

• ~7% of large-a 
orbits acquire 
non-zero e 

• Disturbed systems 
may create exotic 
planets

• Outer planet 
mediated indirect 
instability of close-
in planets is rare

-2 -1  0  1  2  3
log (a/AU)

 0

 0.2

 0.4

 0.6

 0.8

 1

e

 0

 50

 100

 150

 200

Tuesday, February 7, 2012



 12

 13

 14

 15

 16

 17

 18

 19

 20
-0.5  0  0.5  1  1.5  2

K p

g-r

Synthetic CMD for NGC6791

Tuesday, February 7, 2012



 12

 13

 14

 15

 16

 17

 18

 19

 20
-0.5  0  0.5  1  1.5  2

K p

g-r

Synthetic CMD for NGC6791

Main Sequence

Tuesday, February 7, 2012



 12

 13

 14

 15

 16

 17

 18

 19

 20
-0.5  0  0.5  1  1.5  2

K p

g-r

Synthetic CMD for NGC6791

Main Sequence

Giant Branch

Tuesday, February 7, 2012



 12

 13

 14

 15

 16

 17

 18

 19

 20
-0.5  0  0.5  1  1.5  2

K p

g-r

Synthetic CMD for NGC6791

Main Sequence

Giant Branch

Best chance to discover 
planets using Kepler

Tuesday, February 7, 2012



40

 0.1

 1

 10

 12  14  16  18  20  22

n 
( <

 K
p 

)

Kp

1 yr
3.5 yr

8 yr
MSTO

Detectable Planets (SNR>7)
np vs Kp

Tuesday, February 7, 2012



40

 0.1

 1

 10

 12  14  16  18  20  22

n 
( <

 K
p 

)

Kp

1 yr
3.5 yr

8 yr
MSTO

Detectable Planets (SNR>7)
np vs Kp

• ~10 detections 
within a year of 
data collection

• Faint stars should 
not be neglected
(16.5 <Kp < 20)

• Kepler could be 
the first to 
discover planets 
around normal MS 
cluster stars
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binary opens up a strip in parameter space (between the two
diagonal lines in Fig. 1) in which the physical character of dy-
namical scattering interactions is fundamentally different from
that of the comparable-mass case.

In the literature on binary scattering involving stars of com-
parable mass, vc is the velocity delimiting the border between
‘‘hard’’ and ‘‘soft’’ binaries (Heggie 1975). If v1 < vc, the binary
is in the hard regime and will on average harden (a will get
smaller) as a result of an encounter. On the other hand, if v1 > vc,
the binary is in the soft regime and will on average soften (a will
get larger) as a result of an encounter—that is, if the binary is not
destroyed completely. However, Hills & Dissly (1989) and Hills
(1990) suggest that when considering binaries with disparate
masses, the boundary is more accurately given by v1 ¼ vorb, not
by v1 ¼ vc, and they suggest the use of the terminology ‘‘fast-
slow boundary’’ rather than ‘‘hard-soft boundary,’’ since it is the
relative speed of the binarymembers that is physically relevant. In
the literature considering the survivability of planetary systems
(and high mass ratio systems in general) in dense stellar envi-
ronments, both vc and vorb have been used as the single charac-
teristic velocity delimiting the boundary between ionization on the
high-velocity side and hardening on the low-velocity side. How-
ever, as we will see below, for planetary systems the hard-soft
boundary lies at v1 ¼ vc, while the characteristic timescale for the
survivability of a planetary system in a dense environment drops
markedly only at v1 ¼ vorb.

Now that we have written down the two characteristic ve-
locities in the problem, thus dividing the parameter space into
three distinct regions (as shown in Fig. 1), the question naturally
arises: What is the physical character of the scattering inter-
actions in each of the three regions? For v1 < vc, the total energy
of the binary-single system is negative. We thus expect that for
any ‘‘strong’’ encounter (defined approximately as one in which
the classical pericenter distance, rp, between the single star and
the planetary system is of order a), the interaction will be reso-
nant, in the sense that it will survive for many orbital times
(Heggie & Hut 2003). It will behave as a small star cluster, most
likely ejecting its lightest member, in this case the planet, yield-
ing the outcome ‘‘ex_p(res)’’. For rp k a, the likely outcome is a
‘‘direct’’ exchange of the incoming star for the planet (‘‘ex_
p(nonres)’’). We thus expect !ex p ¼ !ex p(res)þ !ex p(nonres) to
be the dominant cross section for v1 < vc . For v1 > vorb, the

interaction is impulsive, since the timescale of the interaction is a
small fraction of the binary orbital period. We thus expect that
any ‘‘strong’’ interaction will ionize the system, making !ion the
dominant cross section in this regime. For vc < v1 < vorb, the
timescale of the interaction is comparable to the orbital period, so
the outcome is not a priori obvious and must be treated numer-
ically. Below, as far as it is possible, we calculate using analytical
techniques the cross sections for each outcome in each of the
three regions of parameter space.

2.1. v1 < vc

First, since for v1 < vc the total energy of the binary-single
system is negative, it is clear that ionization is classically for-
bidden. Thus,

!ion ¼ 0: ð3Þ

We should also mention that for the outcome of preservation,
the only method we have for determining if an interaction was
‘‘strong’’ is whether or not it was resonant. Thus, it should be
clear that for every region of parameter space in Figure 1,

!pres(nonres) ! 1; ð4Þ

since every very distant passage of the single star by the binary
preserves it via a nonresonant interaction.
Heggie et al. (1996) considered interactions of ‘‘hard’’ bina-

ries (in the sense that v1 < vc) with single stars for a wide range
of possible mass ratios in the binary and between the binary
members and the incoming single star. Using analytical tech-
niques, they calculated the scaling of the cross sections for each
possible outcome. They then fitted to numerically calculated cross
sections to determine the weakly mass-dependent ‘‘coefficients’’
on each cross section. From their equations (13) and (14), with
m2 % m3 (since M1 % M2 here), we see that

!ex p(res) % !ex p(nonres): ð5Þ

The cross section for nonresonant exchange of the planet for the
incoming star is given by their equation (17) [divided by 2,
since !ex p(res) % !ex p(nonres)]:
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whereMt ¼ M1 þ mþM2 is the total mass of the binary-single
system, the exponential term is the ‘‘coefficient’’ fit to the nu-
merical results, and the values of amn are given in their Table 3.
The cross section for direct exchange of the incoming star for

the host star is also given by their equation (17), with the ap-
propriate permutation of masses:
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Fig. 1.—Plot of the critical velocity vc and orbital speed vorb for a planetary
system composed of a 1M' star and a 10&3M' planet in an orbit with semimajor
axis a, encountering a 1M' star with relative velocity at infinity v1. Dotted lines
represent characteristic velocity dispersions for open and globular clusters and
orbital sizes for hot Jupiters and Jupiters at 5 AU, as shown.
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Fig. 1.—Plot of the critical velocity vc and orbital speed vorb for a planetary
system composed of a 1M' star and a 10&3M' planet in an orbit with semimajor
axis a, encountering a 1M' star with relative velocity at infinity v1. Dotted lines
represent characteristic velocity dispersions for open and globular clusters and
orbital sizes for hot Jupiters and Jupiters at 5 AU, as shown.
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small fraction of the binary orbital period. We thus expect that
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Fig. 1.—Plot of the critical velocity vc and orbital speed vorb for a planetary
system composed of a 1M' star and a 10&3M' planet in an orbit with semimajor
axis a, encountering a 1M' star with relative velocity at infinity v1. Dotted lines
represent characteristic velocity dispersions for open and globular clusters and
orbital sizes for hot Jupiters and Jupiters at 5 AU, as shown.
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bidden. Thus,

!ion ¼ 0: ð3Þ

We should also mention that for the outcome of preservation,
the only method we have for determining if an interaction was
‘‘strong’’ is whether or not it was resonant. Thus, it should be
clear that for every region of parameter space in Figure 1,

!pres(nonres) ! 1; ð4Þ

since every very distant passage of the single star by the binary
preserves it via a nonresonant interaction.
Heggie et al. (1996) considered interactions of ‘‘hard’’ bina-

ries (in the sense that v1 < vc) with single stars for a wide range
of possible mass ratios in the binary and between the binary
members and the incoming single star. Using analytical tech-
niques, they calculated the scaling of the cross sections for each
possible outcome. They then fitted to numerically calculated cross
sections to determine the weakly mass-dependent ‘‘coefficients’’
on each cross section. From their equations (13) and (14), with
m2 % m3 (since M1 % M2 here), we see that

!ex p(res) % !ex p(nonres): ð5Þ

The cross section for nonresonant exchange of the planet for the
incoming star is given by their equation (17) [divided by 2,
since !ex p(res) % !ex p(nonres)]:
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whereMt ¼ M1 þ mþM2 is the total mass of the binary-single
system, the exponential term is the ‘‘coefficient’’ fit to the nu-
merical results, and the values of amn are given in their Table 3.
The cross section for direct exchange of the incoming star for

the host star is also given by their equation (17), with the ap-
propriate permutation of masses:
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Fig. 1.—Plot of the critical velocity vc and orbital speed vorb for a planetary
system composed of a 1M' star and a 10&3M' planet in an orbit with semimajor
axis a, encountering a 1M' star with relative velocity at infinity v1. Dotted lines
represent characteristic velocity dispersions for open and globular clusters and
orbital sizes for hot Jupiters and Jupiters at 5 AU, as shown.

FREGEAU, CHATTERJEE, & RASIO1088 Vol. 640

Can Planets be Exchanged into 
Circumbinary orbits?

(Fregeau, Chatterjee, & Rasio 2006)

Tuesday, February 7, 2012



binary opens up a strip in parameter space (between the two
diagonal lines in Fig. 1) in which the physical character of dy-
namical scattering interactions is fundamentally different from
that of the comparable-mass case.

In the literature on binary scattering involving stars of com-
parable mass, vc is the velocity delimiting the border between
‘‘hard’’ and ‘‘soft’’ binaries (Heggie 1975). If v1 < vc, the binary
is in the hard regime and will on average harden (a will get
smaller) as a result of an encounter. On the other hand, if v1 > vc,
the binary is in the soft regime and will on average soften (a will
get larger) as a result of an encounter—that is, if the binary is not
destroyed completely. However, Hills & Dissly (1989) and Hills
(1990) suggest that when considering binaries with disparate
masses, the boundary is more accurately given by v1 ¼ vorb, not
by v1 ¼ vc, and they suggest the use of the terminology ‘‘fast-
slow boundary’’ rather than ‘‘hard-soft boundary,’’ since it is the
relative speed of the binarymembers that is physically relevant. In
the literature considering the survivability of planetary systems
(and high mass ratio systems in general) in dense stellar envi-
ronments, both vc and vorb have been used as the single charac-
teristic velocity delimiting the boundary between ionization on the
high-velocity side and hardening on the low-velocity side. How-
ever, as we will see below, for planetary systems the hard-soft
boundary lies at v1 ¼ vc, while the characteristic timescale for the
survivability of a planetary system in a dense environment drops
markedly only at v1 ¼ vorb.

Now that we have written down the two characteristic ve-
locities in the problem, thus dividing the parameter space into
three distinct regions (as shown in Fig. 1), the question naturally
arises: What is the physical character of the scattering inter-
actions in each of the three regions? For v1 < vc, the total energy
of the binary-single system is negative. We thus expect that for
any ‘‘strong’’ encounter (defined approximately as one in which
the classical pericenter distance, rp, between the single star and
the planetary system is of order a), the interaction will be reso-
nant, in the sense that it will survive for many orbital times
(Heggie & Hut 2003). It will behave as a small star cluster, most
likely ejecting its lightest member, in this case the planet, yield-
ing the outcome ‘‘ex_p(res)’’. For rp k a, the likely outcome is a
‘‘direct’’ exchange of the incoming star for the planet (‘‘ex_
p(nonres)’’). We thus expect !ex p ¼ !ex p(res)þ !ex p(nonres) to
be the dominant cross section for v1 < vc . For v1 > vorb, the

interaction is impulsive, since the timescale of the interaction is a
small fraction of the binary orbital period. We thus expect that
any ‘‘strong’’ interaction will ionize the system, making !ion the
dominant cross section in this regime. For vc < v1 < vorb, the
timescale of the interaction is comparable to the orbital period, so
the outcome is not a priori obvious and must be treated numer-
ically. Below, as far as it is possible, we calculate using analytical
techniques the cross sections for each outcome in each of the
three regions of parameter space.

2.1. v1 < vc

First, since for v1 < vc the total energy of the binary-single
system is negative, it is clear that ionization is classically for-
bidden. Thus,

!ion ¼ 0: ð3Þ

We should also mention that for the outcome of preservation,
the only method we have for determining if an interaction was
‘‘strong’’ is whether or not it was resonant. Thus, it should be
clear that for every region of parameter space in Figure 1,

!pres(nonres) ! 1; ð4Þ

since every very distant passage of the single star by the binary
preserves it via a nonresonant interaction.
Heggie et al. (1996) considered interactions of ‘‘hard’’ bina-

ries (in the sense that v1 < vc) with single stars for a wide range
of possible mass ratios in the binary and between the binary
members and the incoming single star. Using analytical tech-
niques, they calculated the scaling of the cross sections for each
possible outcome. They then fitted to numerically calculated cross
sections to determine the weakly mass-dependent ‘‘coefficients’’
on each cross section. From their equations (13) and (14), with
m2 % m3 (since M1 % M2 here), we see that

!ex p(res) % !ex p(nonres): ð5Þ

The cross section for nonresonant exchange of the planet for the
incoming star is given by their equation (17) [divided by 2,
since !ex p(res) % !ex p(nonres)]:
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whereMt ¼ M1 þ mþM2 is the total mass of the binary-single
system, the exponential term is the ‘‘coefficient’’ fit to the nu-
merical results, and the values of amn are given in their Table 3.
The cross section for direct exchange of the incoming star for

the host star is also given by their equation (17), with the ap-
propriate permutation of masses:
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Fig. 1.—Plot of the critical velocity vc and orbital speed vorb for a planetary
system composed of a 1M' star and a 10&3M' planet in an orbit with semimajor
axis a, encountering a 1M' star with relative velocity at infinity v1. Dotted lines
represent characteristic velocity dispersions for open and globular clusters and
orbital sizes for hot Jupiters and Jupiters at 5 AU, as shown.
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binary opens up a strip in parameter space (between the two
diagonal lines in Fig. 1) in which the physical character of dy-
namical scattering interactions is fundamentally different from
that of the comparable-mass case.

In the literature on binary scattering involving stars of com-
parable mass, vc is the velocity delimiting the border between
‘‘hard’’ and ‘‘soft’’ binaries (Heggie 1975). If v1 < vc, the binary
is in the hard regime and will on average harden (a will get
smaller) as a result of an encounter. On the other hand, if v1 > vc,
the binary is in the soft regime and will on average soften (a will
get larger) as a result of an encounter—that is, if the binary is not
destroyed completely. However, Hills & Dissly (1989) and Hills
(1990) suggest that when considering binaries with disparate
masses, the boundary is more accurately given by v1 ¼ vorb, not
by v1 ¼ vc, and they suggest the use of the terminology ‘‘fast-
slow boundary’’ rather than ‘‘hard-soft boundary,’’ since it is the
relative speed of the binarymembers that is physically relevant. In
the literature considering the survivability of planetary systems
(and high mass ratio systems in general) in dense stellar envi-
ronments, both vc and vorb have been used as the single charac-
teristic velocity delimiting the boundary between ionization on the
high-velocity side and hardening on the low-velocity side. How-
ever, as we will see below, for planetary systems the hard-soft
boundary lies at v1 ¼ vc, while the characteristic timescale for the
survivability of a planetary system in a dense environment drops
markedly only at v1 ¼ vorb.

Now that we have written down the two characteristic ve-
locities in the problem, thus dividing the parameter space into
three distinct regions (as shown in Fig. 1), the question naturally
arises: What is the physical character of the scattering inter-
actions in each of the three regions? For v1 < vc, the total energy
of the binary-single system is negative. We thus expect that for
any ‘‘strong’’ encounter (defined approximately as one in which
the classical pericenter distance, rp, between the single star and
the planetary system is of order a), the interaction will be reso-
nant, in the sense that it will survive for many orbital times
(Heggie & Hut 2003). It will behave as a small star cluster, most
likely ejecting its lightest member, in this case the planet, yield-
ing the outcome ‘‘ex_p(res)’’. For rp k a, the likely outcome is a
‘‘direct’’ exchange of the incoming star for the planet (‘‘ex_
p(nonres)’’). We thus expect !ex p ¼ !ex p(res)þ !ex p(nonres) to
be the dominant cross section for v1 < vc . For v1 > vorb, the

interaction is impulsive, since the timescale of the interaction is a
small fraction of the binary orbital period. We thus expect that
any ‘‘strong’’ interaction will ionize the system, making !ion the
dominant cross section in this regime. For vc < v1 < vorb, the
timescale of the interaction is comparable to the orbital period, so
the outcome is not a priori obvious and must be treated numer-
ically. Below, as far as it is possible, we calculate using analytical
techniques the cross sections for each outcome in each of the
three regions of parameter space.

2.1. v1 < vc

First, since for v1 < vc the total energy of the binary-single
system is negative, it is clear that ionization is classically for-
bidden. Thus,

!ion ¼ 0: ð3Þ

We should also mention that for the outcome of preservation,
the only method we have for determining if an interaction was
‘‘strong’’ is whether or not it was resonant. Thus, it should be
clear that for every region of parameter space in Figure 1,

!pres(nonres) ! 1; ð4Þ

since every very distant passage of the single star by the binary
preserves it via a nonresonant interaction.
Heggie et al. (1996) considered interactions of ‘‘hard’’ bina-

ries (in the sense that v1 < vc) with single stars for a wide range
of possible mass ratios in the binary and between the binary
members and the incoming single star. Using analytical tech-
niques, they calculated the scaling of the cross sections for each
possible outcome. They then fitted to numerically calculated cross
sections to determine the weakly mass-dependent ‘‘coefficients’’
on each cross section. From their equations (13) and (14), with
m2 % m3 (since M1 % M2 here), we see that

!ex p(res) % !ex p(nonres): ð5Þ

The cross section for nonresonant exchange of the planet for the
incoming star is given by their equation (17) [divided by 2,
since !ex p(res) % !ex p(nonres)]:
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whereMt ¼ M1 þ mþM2 is the total mass of the binary-single
system, the exponential term is the ‘‘coefficient’’ fit to the nu-
merical results, and the values of amn are given in their Table 3.
The cross section for direct exchange of the incoming star for

the host star is also given by their equation (17), with the ap-
propriate permutation of masses:
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Fig. 1.—Plot of the critical velocity vc and orbital speed vorb for a planetary
system composed of a 1M' star and a 10&3M' planet in an orbit with semimajor
axis a, encountering a 1M' star with relative velocity at infinity v1. Dotted lines
represent characteristic velocity dispersions for open and globular clusters and
orbital sizes for hot Jupiters and Jupiters at 5 AU, as shown.
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binary opens up a strip in parameter space (between the two
diagonal lines in Fig. 1) in which the physical character of dy-
namical scattering interactions is fundamentally different from
that of the comparable-mass case.

In the literature on binary scattering involving stars of com-
parable mass, vc is the velocity delimiting the border between
‘‘hard’’ and ‘‘soft’’ binaries (Heggie 1975). If v1 < vc, the binary
is in the hard regime and will on average harden (a will get
smaller) as a result of an encounter. On the other hand, if v1 > vc,
the binary is in the soft regime and will on average soften (a will
get larger) as a result of an encounter—that is, if the binary is not
destroyed completely. However, Hills & Dissly (1989) and Hills
(1990) suggest that when considering binaries with disparate
masses, the boundary is more accurately given by v1 ¼ vorb, not
by v1 ¼ vc, and they suggest the use of the terminology ‘‘fast-
slow boundary’’ rather than ‘‘hard-soft boundary,’’ since it is the
relative speed of the binarymembers that is physically relevant. In
the literature considering the survivability of planetary systems
(and high mass ratio systems in general) in dense stellar envi-
ronments, both vc and vorb have been used as the single charac-
teristic velocity delimiting the boundary between ionization on the
high-velocity side and hardening on the low-velocity side. How-
ever, as we will see below, for planetary systems the hard-soft
boundary lies at v1 ¼ vc, while the characteristic timescale for the
survivability of a planetary system in a dense environment drops
markedly only at v1 ¼ vorb.

Now that we have written down the two characteristic ve-
locities in the problem, thus dividing the parameter space into
three distinct regions (as shown in Fig. 1), the question naturally
arises: What is the physical character of the scattering inter-
actions in each of the three regions? For v1 < vc, the total energy
of the binary-single system is negative. We thus expect that for
any ‘‘strong’’ encounter (defined approximately as one in which
the classical pericenter distance, rp, between the single star and
the planetary system is of order a), the interaction will be reso-
nant, in the sense that it will survive for many orbital times
(Heggie & Hut 2003). It will behave as a small star cluster, most
likely ejecting its lightest member, in this case the planet, yield-
ing the outcome ‘‘ex_p(res)’’. For rp k a, the likely outcome is a
‘‘direct’’ exchange of the incoming star for the planet (‘‘ex_
p(nonres)’’). We thus expect !ex p ¼ !ex p(res)þ !ex p(nonres) to
be the dominant cross section for v1 < vc . For v1 > vorb, the

interaction is impulsive, since the timescale of the interaction is a
small fraction of the binary orbital period. We thus expect that
any ‘‘strong’’ interaction will ionize the system, making !ion the
dominant cross section in this regime. For vc < v1 < vorb, the
timescale of the interaction is comparable to the orbital period, so
the outcome is not a priori obvious and must be treated numer-
ically. Below, as far as it is possible, we calculate using analytical
techniques the cross sections for each outcome in each of the
three regions of parameter space.

2.1. v1 < vc

First, since for v1 < vc the total energy of the binary-single
system is negative, it is clear that ionization is classically for-
bidden. Thus,

!ion ¼ 0: ð3Þ

We should also mention that for the outcome of preservation,
the only method we have for determining if an interaction was
‘‘strong’’ is whether or not it was resonant. Thus, it should be
clear that for every region of parameter space in Figure 1,

!pres(nonres) ! 1; ð4Þ

since every very distant passage of the single star by the binary
preserves it via a nonresonant interaction.
Heggie et al. (1996) considered interactions of ‘‘hard’’ bina-

ries (in the sense that v1 < vc) with single stars for a wide range
of possible mass ratios in the binary and between the binary
members and the incoming single star. Using analytical tech-
niques, they calculated the scaling of the cross sections for each
possible outcome. They then fitted to numerically calculated cross
sections to determine the weakly mass-dependent ‘‘coefficients’’
on each cross section. From their equations (13) and (14), with
m2 % m3 (since M1 % M2 here), we see that

!ex p(res) % !ex p(nonres): ð5Þ

The cross section for nonresonant exchange of the planet for the
incoming star is given by their equation (17) [divided by 2,
since !ex p(res) % !ex p(nonres)]:

!ex p(nonres) %
"GMta

4v 21

M1 þM2

Mt

! "1=6
M2

mþM2

! "7=2

;
M1 þ m

Mt

! "&1=3M2 þ m

Mt
exp

X

m; n

amn
m

M1 þ m

! "m M2

Mt

! "n
" #

;

ð6Þ

whereMt ¼ M1 þ mþM2 is the total mass of the binary-single
system, the exponential term is the ‘‘coefficient’’ fit to the nu-
merical results, and the values of amn are given in their Table 3.
The cross section for direct exchange of the incoming star for

the host star is also given by their equation (17), with the ap-
propriate permutation of masses:
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Fig. 1.—Plot of the critical velocity vc and orbital speed vorb for a planetary
system composed of a 1M' star and a 10&3M' planet in an orbit with semimajor
axis a, encountering a 1M' star with relative velocity at infinity v1. Dotted lines
represent characteristic velocity dispersions for open and globular clusters and
orbital sizes for hot Jupiters and Jupiters at 5 AU, as shown.
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binary opens up a strip in parameter space (between the two
diagonal lines in Fig. 1) in which the physical character of dy-
namical scattering interactions is fundamentally different from
that of the comparable-mass case.

In the literature on binary scattering involving stars of com-
parable mass, vc is the velocity delimiting the border between
‘‘hard’’ and ‘‘soft’’ binaries (Heggie 1975). If v1 < vc, the binary
is in the hard regime and will on average harden (a will get
smaller) as a result of an encounter. On the other hand, if v1 > vc,
the binary is in the soft regime and will on average soften (a will
get larger) as a result of an encounter—that is, if the binary is not
destroyed completely. However, Hills & Dissly (1989) and Hills
(1990) suggest that when considering binaries with disparate
masses, the boundary is more accurately given by v1 ¼ vorb, not
by v1 ¼ vc, and they suggest the use of the terminology ‘‘fast-
slow boundary’’ rather than ‘‘hard-soft boundary,’’ since it is the
relative speed of the binarymembers that is physically relevant. In
the literature considering the survivability of planetary systems
(and high mass ratio systems in general) in dense stellar envi-
ronments, both vc and vorb have been used as the single charac-
teristic velocity delimiting the boundary between ionization on the
high-velocity side and hardening on the low-velocity side. How-
ever, as we will see below, for planetary systems the hard-soft
boundary lies at v1 ¼ vc, while the characteristic timescale for the
survivability of a planetary system in a dense environment drops
markedly only at v1 ¼ vorb.

Now that we have written down the two characteristic ve-
locities in the problem, thus dividing the parameter space into
three distinct regions (as shown in Fig. 1), the question naturally
arises: What is the physical character of the scattering inter-
actions in each of the three regions? For v1 < vc, the total energy
of the binary-single system is negative. We thus expect that for
any ‘‘strong’’ encounter (defined approximately as one in which
the classical pericenter distance, rp, between the single star and
the planetary system is of order a), the interaction will be reso-
nant, in the sense that it will survive for many orbital times
(Heggie & Hut 2003). It will behave as a small star cluster, most
likely ejecting its lightest member, in this case the planet, yield-
ing the outcome ‘‘ex_p(res)’’. For rp k a, the likely outcome is a
‘‘direct’’ exchange of the incoming star for the planet (‘‘ex_
p(nonres)’’). We thus expect !ex p ¼ !ex p(res)þ !ex p(nonres) to
be the dominant cross section for v1 < vc . For v1 > vorb, the

interaction is impulsive, since the timescale of the interaction is a
small fraction of the binary orbital period. We thus expect that
any ‘‘strong’’ interaction will ionize the system, making !ion the
dominant cross section in this regime. For vc < v1 < vorb, the
timescale of the interaction is comparable to the orbital period, so
the outcome is not a priori obvious and must be treated numer-
ically. Below, as far as it is possible, we calculate using analytical
techniques the cross sections for each outcome in each of the
three regions of parameter space.

2.1. v1 < vc

First, since for v1 < vc the total energy of the binary-single
system is negative, it is clear that ionization is classically for-
bidden. Thus,

!ion ¼ 0: ð3Þ

We should also mention that for the outcome of preservation,
the only method we have for determining if an interaction was
‘‘strong’’ is whether or not it was resonant. Thus, it should be
clear that for every region of parameter space in Figure 1,

!pres(nonres) ! 1; ð4Þ

since every very distant passage of the single star by the binary
preserves it via a nonresonant interaction.
Heggie et al. (1996) considered interactions of ‘‘hard’’ bina-

ries (in the sense that v1 < vc) with single stars for a wide range
of possible mass ratios in the binary and between the binary
members and the incoming single star. Using analytical tech-
niques, they calculated the scaling of the cross sections for each
possible outcome. They then fitted to numerically calculated cross
sections to determine the weakly mass-dependent ‘‘coefficients’’
on each cross section. From their equations (13) and (14), with
m2 % m3 (since M1 % M2 here), we see that

!ex p(res) % !ex p(nonres): ð5Þ

The cross section for nonresonant exchange of the planet for the
incoming star is given by their equation (17) [divided by 2,
since !ex p(res) % !ex p(nonres)]:
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whereMt ¼ M1 þ mþM2 is the total mass of the binary-single
system, the exponential term is the ‘‘coefficient’’ fit to the nu-
merical results, and the values of amn are given in their Table 3.
The cross section for direct exchange of the incoming star for

the host star is also given by their equation (17), with the ap-
propriate permutation of masses:
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Fig. 1.—Plot of the critical velocity vc and orbital speed vorb for a planetary
system composed of a 1M' star and a 10&3M' planet in an orbit with semimajor
axis a, encountering a 1M' star with relative velocity at infinity v1. Dotted lines
represent characteristic velocity dispersions for open and globular clusters and
orbital sizes for hot Jupiters and Jupiters at 5 AU, as shown.
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Conclusions
• Stellar dynamics has little effect on close-in planetary orbits

• Kepler should be able to discover planets in NGC6791

• Fainter stars (16.5 < Kp < 20) should not be neglected

• One year of observation may find ~10 giant planets (Rp > 

10 R⊕ ; exact number depends on initial assumptions)

• Kepler may well answer whether planets form around cluster 
stars in a similar way as they do around field stars

• Occassionally circumbinary planets may be created in cluster 
environments

• Planet forms around a single star

• Interaction with a stellar binary

• Forms circumbinary planet
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Planetary Orbit Initial Conditions

• a-distribution:  Flat in logarithmic intervals between 
10-2 - 102 AU

• e-distribution: Circular

• M-distribution: Power-law, df/dlogM ~ M-0.48 (Howard et al. 2011)

• Mp is between 1 M⊕ - 5 MJ  

• Planet’s radius Rp = min ( Mp2.06, MJ )

• 1/3 of all stars have a planet
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A Typical Galactic 
Globular Cluster

Property Typical GC Model

Mass (M⊙)

Central 
Density 
(M⊙pc-3)

1x105 2x105

1x104 4x104
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Effects of Stellar Dynamics on 
Planetary Orbits

a - distribution

Planets interrior to 10 AU 
are undisterbed even for 

globular clusters

10-5

10-4

10-3

10-2

10-1

100

-2 -1  0  1  2  3  4

pd
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log(a/AU)

t=0
t=9Gyr
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Radial Distribution of Detectable Planets

(Platais et al. 2011)
 0.01

 0.1

 1

 0.1  1  10
r2D (PC)

n (< r2D)
N / pixel 
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Calculation of SNR for Kepler 
Detectability

• Stellar L and R are obtained from CMC.

• L is converted first to B and V magnitudes using Lejunne 
spectra.  Kp is then calculated using B and V assuming 4 Kpc 
distance.

• Planet’s M and a are obtained from CMC.

• Planet’s R is calculated using Rp = min (Mp2.06, MJ).

• For a given Kp CDPP is calculated using a polynomial fit of Kepler’s 
magnitude-dependent CDPP values (Gilliland et al. 2011).

(e.g., Howard et al. 2011)

SNR =

�
Rp

R�

�2

CDPP

�
ntr.tdur
6.5hr
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Modeling NGC6791
Explored Initial Conditions

Number of stars 104 - 105

Concentration w0 3 - 6

Virial Radius (pc) 3 - 8

Galacto-centric distance (Kpc) 5 - 10

Stellar binary fraction (fb) 0.1 - 0.5

Fraction of planet hosts (fp) 0.33
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Initial conditions for GC model

Number of stars 6 x 105

Concentration w0 6

Virial Radius (pc) 4

Galacto-centric distance (Kpc) 8.5

Stellar binary fraction (fb) 0.1

Fraction of planet hosts (fp) 0.33
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Evolution of Rc/Rh and ρc

Core Radius Central Density

• A regular non-core-collapsed cluster

• Low central density
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planets escaped from cluster
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