PLANETS INSTAR CLUSTERS

Sourav Chatterjee

Eric B. Ford Frederic A. Rasio

NORTHWESTER UNIVERSITY

WHAT DO WE KNOW ABOUT PLANETS IN STAR CLUSTERS?

- Few observed planets in star clusters
 - Planet around giant ε Tauri in Hyades (Bunéi et al. 2007)
 - Null results in 47tuc (Gilliland et al. 2000, Weldrake et al. 2005)
 - Pulsar planets in M4 (e.g., Backer 1993; Thorsett et al. 1999)
- Possible explanations
 - Metallicity vs planet-occurrence correlation
 - Stellar dynamics

WHAT DO WE KNOW ABOUT PLANETS IN STAR CLUSTERS?

- Few observed planets in star clusters
 - Planet around giant ε Tauri in Hyades (Bunéi et al. 2007)
 - Null results in 47tuc (Gilliland et al. 2000, Weldrake et al. 2005)
 - Pulsar planets in M4 (e.g., Backer 1993; Thorsett et al. 1999)
- Possible explanations
 - Metallicity vs planet-occurrence correlation
 - Stellar dynamics

Do planets form around cluster stars at the same rate as they do around field stars?

OPEN STAR CLUSTERS IN KEPLER FIELD

Courtesy: kepler.nasa.gov

OPEN STAR CLUSTERS IN KEPLER FIELD

OPEN STAR CLUSTERS IN KEPLER FIELD

OPEN CLUSTER NGC6791 IN KEPLER FIELD OF VIEW

- Super-Solar metallicity: Fe/H = 0.3
- High stellar number
- Low-density compared to typical GGCs
- In the field of view of Kepler

Property	Typical GC	NGC6791
Mass (M⊙)	I ×10 ⁵	5×10 ³
Central Density (M⊙pc ⁻³)	I×I0 ⁴	30

METHOD

Hénon-type Monte Carlo Cluster Evolution Code

- Modeling star clusters using a Hénon-type Monte Carlo code "CMC"
 - Two-body relaxation (Joshi, Rasio, & Portegies Zwart 2000)
 - Single and binary stellar evolution (Chatterjee et al. 2010)
 - Strong interactions including physical collisions and binary mediated interactions (Fregeau & Rasio 2007)
 - Galactic tidal stripping (Joshi, Nave, & Rasio 2001; recently updated in Chatterjee et al. 2010)
- Large ranges of initial mass, compactness (w_0), initial binary fraction (f_b) are explored
 - A typical Galactic GC
 - NGC6791: Open cluster in the Kepler field of view

METHOD

Hénon-type Monte Carlo Cluster Evolution Code

- Modeling star clusters using a Hénon-type Monte Carlo code "CMC"
 - Two-body relaxation (Joshi, Rasio, & Portegies Zwart 2000)
 - Single and binary stellar evolution (Chatterjee et al. 2010)
 - Strong interactions including physical collisions and binary mediated interactions (Fregeau & Rasio 2007)
 - Galactic tidal stripping (Joshi, Nave, & Rasio 2001; recently updated in Chatterjee et al. 2010)
- Large ranges of initial mass, compactness (w_0), initial binary fraction (f_b) are explored
 - A typical Galactic GC
 - NGC6791: Open cluster in the Kepler field of view

THE BEST-FIT MODEL OF NGC6791

 $w_0 = 5$, $R_g = 10$ kPC, $f_b = 0.1$, $f_p = 0.33$

Best fit parameters out of ~200 models:

•
$$N_i = 5 \times 10^4$$

•
$$w_0 = 5$$

$$R_g = 10 \text{ Kpc}$$

•
$$f_b = 0.1$$

•
$$f_p = 0.33$$

(Platais et al. 2011)

EFFECTS OF STELLAR DYNAMICS ON PLANETARY ORBITS a - distribution

Semimajor axis distribution is mostly unchanged even for a ~ 100 AU

EFFECTS OF STELLAR DYNAMICS ON PLANETARY ORBITS a & e

 ~7% of large-a orbits acquire non-zero e

- Disturbed systems may create exotic planets
- Outer planet mediated indirect instability of closein planets is rare

DETECTABLE PLANETS (SNR>7) $n_p vs K_p$

DETECTABLE PLANETS (SNR>7) $n_p vs K_p$

- ~ 0 detections
 within a year of
 data collection
- Faint stars should not be neglected (16.5 < K_P < 20)
- Kepler could be the first to discover planets around normal MS cluster stars

 $\begin{array}{c} \mbox{DETECTABLE PLANETS (SNR>7)} \\ n_p \ vs \ R_p \end{array} \end{array}$

CONCLUSIONS

- Stellar dynamics has little effect on close-in planetary orbits
- Kepler should be able to discover planets in NGC6791
 - Fainter stars ($|6.5 < K_p < 20$) should not be neglected
 - One year of observation may find ~10 giant planets (Rp > 10 R_{\oplus}; exact number depends on initial assumptions)
- Kepler may well answer whether planets form around cluster stars in a similar way as they do around field stars
- Occassionally circumbinary planets may be created in cluster environments
 - Planet forms around a single star
 - Interaction with a stellar binary
 - Forms circumbinary planet

PLANETARY ORBIT INITIAL CONDITIONS

- a-distribution: Flat in logarithmic intervals between
 10⁻² 10² AU
- e-distribution: Circular
- M-distribution: Power-law, df/dlogM ~ M^{-0.48} (Howard et al. 2011)
 - M_p is between I M_{\oplus} 5 M_J
- Planet's radius $R_p = min (M_p^{2.06}, M_J)$
- 1/3 of all stars have a planet

A TYPICAL GALACTIC GLOBULAR CLUSTER

Property	Typical GC	Model
Mass (M⊙)	I×I0 ⁵	2×10 ⁵
Central Density (M⊙pc ⁻³)	I×10 ⁴	4×10 ⁴

EFFECTS OF STELLAR DYNAMICS ON PLANETARY ORBITS a - distribution

RADIAL DISTRIBUTION OF DETECTABLE PLANETS

(Platais et al. 2011)

<u>CALCULATION OF SNR FOR KEPLER</u> <u>DETECTABILITY</u>

- Stellar L and R are obtained from CMC.
 - L is converted first to B and V magnitudes using Lejunne spectra. K_P is then calculated using B and V assuming 4 Kpc distance.
- Planet's M and a are obtained from CMC.
 - Planet's R is calculated using $R_p = \min(M_p^{2.06}, M_J)$.
- For a given K_P CDPP is calculated using a polynomial fit of Kepler's magnitude-dependent CDPP values (Gilliland et al. 2011).

$$SNR = \frac{\left(\frac{R_p}{R_\star}\right)^2}{CDPP} \sqrt{\frac{n_{tr}.t_{dur}}{6.5hr}}$$

MODELING NGC6791 EXPLORED INITIAL CONDITIONS

Number of stars	10⁴ - 10⁵
Concentration w ₀	3 - 6
Virial Radius (pc)	3 - 8
Galacto-centric distance (Kpc)	5 - 10
Stellar binary fraction (f_b)	0.1 - 0.5
Fraction of planet hosts (f_P)	0.33

INITIAL CONDITIONS FOR GC MODEL

Number of stars	6 x 10 ⁵
Concentration w ₀	6
Virial Radius (pc)	4
Galacto-centric distance (Kpc)	8.5
Stellar binary fraction (f_b)	0.1
Fraction of planet hosts (f _P)	0.33

$\frac{\text{EVOLUTION OF } R_{C}/R_{H} \text{ AND } \rho_{C}}{\text{Core Radius}}$

- A regular non-core-collapsed cluster
- Low central density

expansion from SE mass loss

 r_c/r_h

t

PLANETS ESCAPED FROM CLUSTER

