Zach Berta Harvard University Department of Astronomy

David Charbonneau, Eliza Kempton, Christopher J. Burke, Jean-Michel Désert, Peter McCullough, Jonathan Irwin, Philip Nutzman, Jonathan Fortney, Derek Homeier

Hubble WFC3 Observations the Super-Earth GJ1214b's Atmosphere

Monday, December 19, 2011

J. W. Thompson

image:

late M dwarf

GJ1214b 2.7 R⊕ 6.5 M⊕

image: J. W. Thompson

Monday, December 19, 2011

models from Miller-Ricci (Kempton) & Fortney (2010)

see Adams et al. (2008), Rogers & Seager (2010), Nettelmann et al. (2011)

see Kempton, Zahnle, & Fortney (2011), Crossfield et al. (2011)

Hubble Wide Field Camera 3 (WFC3)

three transits of GJ1214b with 1.1-1.7μm grism spectroscopy (WFC3/IR G141; P.I. = Z. Berta)

solar composition

- solar composition with no CH_4

- 10% H₂O composition

- 20% H₂O composition

the WFC3 spectrum

models from Miller-Ricci (Kempton) & Fortney (2010)

Monday, December 19, 2011

40% H₂O composition

models from Miller-Ricci (Kempton) & Fortney (2010) the WFC3 spectrum

100% H₂O composition

models from Miller-Ricci (Kempton) & Fortney (2010) the WFC3 spectrum

- solar composition with clouds at 100 mbar

- solar composition with clouds at 10 mbar

see Kempton, Zahnle, & Fortney (2011)

WFC3 observations suggest GJ1214b has a water-rich atmosphere (and interior!) or thick high altitude clouds.

image: J. W. Thompson

 $(\mathbf{2})$ WFC3 can be a robust tool for studying exoplanet atmospheres; it is more stable than NICMOS.

image: J. W. Thompson

Berta et al. (soon to be submitted)

Monday, December 19, 2011

Monday, December 19, 2011

WFC3 GJ1214b white light

ramp parameters don't vary from visit to visit!

(probably set by illumination cadence, which was the same across the 3 visits)*

* side note:

be nice to WFC3!

o komp deloy in it botch Visit Visit Visit 3

(rodius rotio)

R (romp omplitude)

0.00404+0.00012

0.00396+0.0012

. Komp timescole)

30×2

29*2

2922

The more pixels ight pixels receive, the worse their ramp. their ramp.

Positions + shapes vary, but they repeat from orbit to orbit within each visit.

WFC3 is in focus.