Polarimetry of Hot Inflated Jupiters Reveals Their Neptune-like Blue Appearance

Image credit: Daria Rios Svetlana V. Berdyugina Kiepenheuer Institut für Sonnenphysik, Freiburg, Germany A. Berdyugin, V. Piirola, FINCA, University ofTurku, Finland

Reflected Light

- Direct probe of planetary atmospheres
- Methods:
 - Spectroscopic signatures:

Difference between modeled and observed stellar spectrum

(Charbonneau et al. 1999, Collier Cameron et al. 1999, 2000, 2002; Leigh et al. 2003ab; Rodler et al. 2008, 2010)

- Photometric optical secondary eclipses

Difference between observed stellar and star+planet flux

(Rowe et al. 2008; Snellen et al. 2009, 2010; Alonso et al. 2009, 2010;Christiansen et al. 2010; Kipping & Bakos 2011; Demory et al. 2011; Desert et al. 2011ab; Kipping & Spiegel 2011)

- Polarimetry

Intrinsically differential technique offered by nature expands our ability to study exoplanets

(Hough et al. 2006; Berdyugina et al. 2008, 2011; Wiktorovicz 2009; Lucas et al. 2009)

E - W S

1 milliarcsecond

90

20

First Detection: HD189733b

Transiting hot Jupiter

- mass 1.15 M_J
- period 2.2 d
- semimajor axis 0.03 AU
- **B band** (440nm, **DiPol**, KVA60)

(Berdyugina et al. 2008)

- 93 nightly measurements (3h), Stokes q & u
- Individual errors ~(1-2)·10⁻⁴
- Error of binned data $\sim 5 \cdot 10^{-5}$
- **UBV** (360,440,550nm, **TurPol**, NOT) (*Berdyugina et al. 2011a*)
 - 35 nightly measurements(3-4h), Stokes q & u
 - 29 standard stars for calibration: $\sim(1-2)\cdot10^{-5}$
 - Individual errors \sim (2-4) \cdot 10⁻⁵
 - Error of binned data $\sim 1.10^{-5}$
- Monte Carlo error analysis
- Max amplitude $9x10^{-5} \pm 10^{-5}$

Model with Condensates: HD189733b

- Polarimetry and transit data fit with one model
- Semi-empirical model
 - Rayleigh scattering: H, H2, He, CO, H2O, CH4, e⁻, MgSiO3 (Lecavelier des Etangs et al. 2008)
 - Absorption: H, H⁻, H2⁻, H2⁺,He, He⁻, metals
 - High-altitude condensate layer (haze) with 20-30nm particles
 - $R_{\tau=1}/R_J(U) \sim 1.19 \pm 0.24 \rightarrow Scat$
 - R_{τ=1}/R_J(B)~1.18±0.10 → Scat(in agreement with Sing et al. 2011)
 - $R_{\tau=1}/R_J$ (∨)<0.75±0.20 → Abs
 - $-R_{\tau=1}/R_J(RI) < 0.43 \rightarrow Abs$

HD189733b: New data

HD189733b: New data

Wiktorovicz (poster):

HD189733b: Geometrical albedo

- Strong function of λ

 0.61 at 400 nm,
 0.28 at 550 nm,
 <0.2 at 600 nm,
 <0.1 at >800 nm
- Similar to that of Neptune
 - blue: Rayleigh and Raman scattering on H₂
 - red: absorption by molecules
- Blue Planet

υ And b: Polarimetry

Non-transiting

- mass >0.69 M_J
- period 4.6 d
- semimajor axis 0.06 AU

UBV bands

(360, 440, 550 nm)

- 35 nightly measurements(2-3h), Stokes q & u
- 13 standard stars for calibration: $\sim(1-2)\cdot10^{-5}$
- Individual errors
 ~(2-4)·10⁻⁵
- Instr. polariz. ~1.10⁻⁵
- Mean error of binned data = 0.7.10⁻⁵
- Monte Carlo error anal.
- Average amplitude UBV: 5±0.5(0.7)x10⁻⁵

υ And b: Properties

1000

Wavelength [nm]

Geometrical Albedo of Hot Jupiters

Planet	Ag	Passband	Rp	M_{p}	ρ	а	Τ.	<i>R</i> _*	Method ⁺ ,
	-	[nm]	$[R_J]$	$[M_J]$	[g cm ⁻³]	[AU]	[K]	$[R_{\odot}]$	Reference
HD189733b	0.62±0.31	345-388	1.178	1.138	0.86	0.03142	4980	0.788	Pol, [1]
22	0.61±0.13	390-490							33
22	0.28±0.16	500-583							22
22	<0.26	450-650							Pol, [3]
v And b	0.53±0.27	345-388	1.35	0.74	0.37	0.059	6212	1.631	Pol, [2]
22	0.67±0.24	390–490							33
22	0.29±0.23	500-490							33
HD209458b	< 0.17	400-700	1.38	0.714	0.34	0.04747	6075	1.146	Ph, [4]
CoRoT-1b	0.20±0.08	400-1000	1.49	1.03	0.39	0.0254	5950	1.11	Ph, [5]
22	<0.2	560-860							Ph, [6]
CoRoT-2b	0.16±0.03	560-860	1.465	3.31	1.31	0.0281	5625	0.902	Ph, [7]
HATP-7b	<0.18	423-897	1.421	1.8	0.78	0.0379	6350	1.84	Ph, [9]
22	< 0.13	350-1000							Ph, [8]
TrES-2b	< 0.01	423-897	1.169	1.253	0.97	0.03556	5850	1.0	Ph, [10]
TrES-3b	<1.07	550-700	1.305	1.91	1.07	0.0226	5720	0.813	Ph, [11]
22	< 0.30	700-850							»»
22	< 0.62	850-1000							22
Kepler-5b	0.12±0.04	423-897	1.431	2.114	0.90	0.05064	6297	1.793	Ph, [12,13]
Kepler-6b	0.11±0.04	423-897	1.323	0.669	0.36	0.04567	5647	1.391	Ph, [13]
Kepler-7b	0.32±0.03	423-897	1.614	0.433	0.13	0.06246	5933	2.02	Ph, [12,14]
Kepler-8b	< 0.63	423-897	1.419	0.60	0.26	0.0483	6213	1.486	Ph, [12]
Kepler-17b	0.10 ± 0.02	423-897	1.31	2.45	1.35	0.02591	5630	1.019	Ph, [15]
τ Boo b	< 0.3	466-499	(1.2) [×]	>3.9	2.80	0.046	6309	1.331	Sp, [16]
22	< 0.39	385-611	(1.2)×						Sp, [17,20]
22	< 0.37	590-920	(1.2)×						Pol, [21]
HD75289A b	< 0.12	400-900	(1.6)×	>0.42	0.24	0.046	6120	1.25	Sp, [18]
22	<0.46	400-900	(1.2)×						Sp, [19]

Geometrical Albedo of Hot Jupiters

(Berdyugina et al. 2011b)

Polarized Light from Atmospheres of Nearby Extra-Terrestrial Systems

- PLANETS: Dedicated facilities
- Current: La Palma
 - KVA60, DIPol
 - NOT 2.5m, TurPol
- Future: Haleakala
 - H80, DIPol-2 (2011)
 - PLANETS 1.8m, InnoPol (2013)
- Telescope network for polarimetry

Conclusions

Polarimetry is a differential technique with advantages for direct detection of exoplanets

- ⇒ composition of the atmosphere, weather pattern, rot. periods, magnetospheres
- Polarimetry provides a detection tool for a much larger sample of exoplanets:
 - \Rightarrow non-transiting planets
 - \Rightarrow massive stars, binares
 - \Rightarrow evolved stars (giants)
- Different instruments provide consistent measurements
- Rayleigh scattering with the strong wavelength dependence dominates the reflected light ⇒ blue planets
- Polarimetry provides new physical insights into atmospheres (albedo, clouds)