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Detection of first transiting planet, HD 209458b (R = 1.35RJup)

Standard gas-giant cooling theory suggests that evolved 
planets should not be significantly bigger than Jupiter. 

(i.e. expect radius to shrink significantly in less than a Gyr)

Radius anomaly - HD 209458b is too puffy.

The Problem

A decade of transit detections: 
puffy hot Jupiters are common!

What’s going on?



Some Proposed Solutions

I)   Current eccentricity tides
(Bodenheimer et al 2001/2003, Mardling 2007, Liu et al 2008)

II)  Strong early tidal heating
(Ibgui & Burrows 2009, Miller et al 2009, Laconte et al 2010)

III)  Strong early tidal heating
(Arras & Socrates 2009, Gu & Oglivie 2009)

IV) Kinetic Heating 
(Showman & Guillot 2002, Guillot & Showman 2002)

V) Enhanced opacity
(Burrows et al 2007)

VI) Double diffusive convection
(Stevenson 1985, Chabrier & Baraffe 2007)

etc...
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Ohmic Dissipation in the atmosphere stalls secular cooling 

Ohmic Dissipation in the interior inflates the planet

Our Solution

Winds on hot Jupiters are fast (~ few km/s)

Atmospheres of hot Jupiters are hot (T > 1500K)
+

Thermal ionization, which results in electrical 
conductivity + fast wind allows for induction of emf

Electrical currents through the interior



Ionization in hot Jupiter atmospheres

T-P profile from Spiegel et al 2009
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Induced Current
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(Batygin & Stevenson 2010)
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“Self-Consistent” Approach

Ohmic Dissipation

Structure of Planet Electrical Conductivity

Variables:
Planetary Mass, Effective Temperature

(solve induction equation)

(thermal ionization)
descendant of Berkeley
stellar evolution code(                   )
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Mechanism Efficiency

So what’s the value of the efficiency factor?
In detail, a complex issue, that requires numerical MHD, but

D�v

Dt
= ...+

�J × �B

ρ
∼ ...+

σ�v �B2

ρ
∼ ...− �v

τL

In steady state, work done by the flow is limited by the 
efficiency factor i.e. the fraction of insolation that is 

available to do useful work

Massage the equations until they resemble Ekman balance
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After some calculus + algebra, it can be shown that
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In the hot-Jupiter parameter regime, this gives

or a bit more.



Thermal Evolution of Some Planets (ε = 3%)

Hottest planets Ohmically heat up faster than they cool.

(Batygin, Stevenson & Bodenheimer 2011)



Theory (ε = 1%, t = 5Gyr) vs Data

(Batygin, Stevenson & Bodenheimer 2011)



Theory (ε = 3%, t = 5Gyr) vs Data

(Batygin, Stevenson & Bodenheimer 2011)



Theory (ε = 5%, t = 5Gyr) vs Data

(Batygin, Stevenson & Bodenheimer 2011)



Summary

A new MHD mechanism for inflation of  extrasolar gas giants.

Coupled structural/heating calculations show that the 
mechanism is universally capable of explaining radius anomalies

Radius is a strong function of mass, Teff

Roche-lobe overflow is possible for low-mass hot Jupiters in 
the absence of high-Z cores

Batygin & Stevenson 2010, ApJL 714
Batygin, Stevenson & Bodenheimer, 2011, ApJ 738
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Future Work

We considered kinematic flows, but Lorentz 
force (JxB) may act to significantly modify 

the nature of the flow.

How does the induced current affect the 
interior dynamo?

What about the stellar magnetic field? 
Linking of field lines?

Reexamination of the results with a better 
atmospheric model, taking into account 

variability in the efficiency factor.
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Some Scalings

P ∝
√

Z

P ∝ exp(T )
P ∝ σ}

Changing Y (core vs. no core) has little effect.

Also, to leading order,

Pint ∝ δ2Patm ∝ δ

P ∝ v2 P ∝ B2
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