Gaussian processes: the next step in exoplanet data analysis

Suzanne Aigrain (University of Oxford) Neale Gibson, Tom Evans, Amy McQuillan Steve Roberts, Steve Reece, Mike Osborne

... let the data speak

Gaussian processes: the next step in exoplanet data analysis

... let the data speak

$P(\boldsymbol{t} | \boldsymbol{X}, \boldsymbol{\theta}, \boldsymbol{\phi}) = \mathcal{N}[m(\boldsymbol{X}, \boldsymbol{\phi}), \boldsymbol{K}]$

a priori knowledge

get some data

 $k_{\rm SE}(t,t') = A^2 \exp\left(-\frac{(t-t')^2}{2l^2}\right)$

 $k_{\rm SE}(t,t') = A^2 \exp\left(-\frac{(t-t')^2}{2l^2}\right)$

 $k_{\rm SE}(t,t') = A^2 \exp\left(-\frac{(t-t')^2}{2l^2}\right)$

Example application 1: instrumental systematics in transmission spectra

See Neale Gibson's talk

Example application 2: modelling HD 189733b's OOT light curve

$$k_{\text{QP,mixed}}(t,t') = A^2 \exp\left(-\frac{\sin^2[\pi(t-t')/P]}{2L^2}\right) \times \left(1 + \frac{(t-t')^2}{2\alpha l^2}\right)^{-\alpha} + \sigma^2 \mathbf{I}.$$

Example application 2: modelling HD 189733b's OOT light curve

Time (MJD)

spots (Frederic Pont's talk)

Example application 2: modelling HD 189733b's OOT light curve

$$k_{\text{QP,mixed}}(t,t') = A^2 \exp\left(-\frac{\sin^2[\pi(t-t')/P]}{2L^2}\right) \times \left(1 + \frac{(t-t')^2}{2\alpha l^2}\right)^{-\alpha} + \sigma^2 \mathbf{I}.$$

Pros ...

... and cons

- Rigorous error propagation
- Extremely versatile
- Built-in Ockam's razor
- Joint modelling of arbitrary number of inputs (and outputs)
- Easy to combine with other techniques e.g. MCMC

- Computationally intensive: O(N³)
 - ok up to N~1000
 - alternative: Variational Bayes (see Tom Evans' poster)

Pros ...

... and cons

- Rigorous error propagation
- Extremely versatile
- Built-in Ockam's razor
- Joint modelling of arbitrary number of inputs (and outputs)
- Easy to combine with other techniques e.g. MCMC

- Computationally intensive: O(N³)
 - ok up to N~1000
 - alternative: Variational Bayes (see Tom Evans' poster)

Want to try? Python GP module under development