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Figure 1. The ‘raw’ HD 189733 NICMOS dataset used as an example for our Gaussian process model. Left: Raw light curves of HD
189733 for each of the 18 wavelength channels, from 2.50µm to 1.48µm top to bottom. Right: The optical state parameters extracted
from the spectra plotted as a time series. These are used as the input parameters for our GP model. The red lines represent a GP
regression on the input parameters, used to remove the noise and test how this effects the GP model.

the noisy input parameters. We also checked that the choice

of hyperprior length scale had little effect on the results, by

setting them to large values, and repeating the procedure

with varying length scales ensuring the transmission spec-

tra were not significantly altered.

3.2 Type-II maximum likelihood

As mentioned in Sect. 2.4, a useful approximation is Type-II

maximum likelihood. First, the log posterior is maximised

with respect to the hyperparameters and variable mean-

function parameters using a Nelder-Mead simplex algorithm

(see e.g. Press et al. 1992). The transit model is the same

as that used in GPA11, which uses Mandel & Agol (2002)

models calculated assuming quadratic limb darkening and a

circular orbit. All non-variable parameters were fixed to the

values given in Pont et al. (2008), except for the limb dark-

ening parameters, which were calculated for each wavelength

channel (GPA11, Sing 2010). The only variable mean func-

tion variable parameters are the planet-to-star radius ratio,

and two parameters that govern a linear baseline model; an

out-of-transit flux foot and (time) gradient Tgrad.

An example of the predictive distributions found using

type-II maximum likelihood is shown in Fig. 2 for four of the

wavelength channels. In this example, only orbits 2, 3 and 5

are used to determine the parameters and hyperparameters

of the GP (or ‘train’ the GP), and are shown by the red

points
4
. Orbit 4 (green points) was not used in the training

set. Predictive distributions were calculated for orbits 2–5,

and are shown by the grey regions, which plot the 1 and 2σ
confidence intervals. The predictive distribution is a good fit

to orbit 4, showing that our GP model is effective at mod-

elling the instrumental systematics. The systematics model

will of course be even more constrained than in this exam-

ple, as we use orbits 2–5 to simultaneously infer parameters

of the GP and transit function.

Now that all parameters and hyperparameters are opti-

mised with respect to the posterior distribution, the hyper-

parameters are held fixed. This means the inverse covari-

ance matrix and log determinant used to evaluate the log

posterior are also fixed, and need calculated only once. An

MCMC is used to marginalise over the remaining parame-

ters of interest, in this case the planet-to-star radius ratio

4 We used the smoothed hyperparameters here for aesthetic pur-
poses. Using the noisy hyperparameters would simply result in
noisy predictive distributions.

c� 2002 RAS, MNRAS 000, 1–12

time-series
correlated

disentangle

high precision

noise

st
o
ch

as
ti
c

... let the data speak



A Gaussian process in a nutshell

2 N. P. Gibson, S. Aigrain et al.

GAUSSIAN PROCESSES FOR REGRESSION

Models based on Gaussian processes are extensively used in
the machine learning community for Bayesian inference in
regression and classification problems. They can be seen as
an extension of kernel regression to probabilistic models. In
this appendix, we endeavour to give a very brief introduction
to the use of GPs for regression. Our explanations are based
on the textbooks by Rassmussen & Williams (2006) and
Bishop (2006), where the interested reader will find far more
complete and detailed information.

Introducing Gaussian processes

Consider a collection of N observations, each consisting of
D known inputs, or independent variables, and one output,
or dependent variable, which is measured with finite accu-
racy (it is trival to extend the same reasoning to more than
one, jointly observed outputs). In the case of observations
of a planetary transit in a single bandpass, for example, the
output is a flux or magnitude, and the inputs might include
the time at which the observations were made, but also an-
cillary data pertaining to the state of the instrument and
the observing conditions. In the machine learning literature,
observed outputs are usually referred to as targets, because
the quality of a model is measured by its ability to repro-
duce the targets, given the inputs, and we shall adopt this
convention here.

We write the inputs for the nth observation as a column
vector xn = (x1,n . . . , xD,n)T, and the corresponding target
value as tn. The N target values are then collated into a
column vector t = (t1, . . . , tN )T, and the D×N outputs into
a matrix X, with elements Xij = xi,j . A standard approach,
which most astronomers will be familiar with, is to model
the data as:

t = m(X, φ) + �

where m is a mean function with parameters φ, which acts
on the matrix of N input vectors, returning an N -element
vector, and � represents independent, identically distributed
(i.i.d.) noise

� ∼ N
�
0, σ2I

�
.

Here N [a,B] represents a multivariate Gaussian distribu-
tion with mean vector a and covariance matrix B, σ is the
standard deviation of the noise, and I is the identity matrix.
The joint probability distribution for a set of outputs t is
thus:

P (t |X, σ, φ) = N
�
m(X, φ), σ2I

�

A Gaussian process (hereafter GP) is defined by the fact
that the joint distribution of any set of samples drawn from a
GP is a multivariate Gaussian distribution. Therefore, i.i.d.
noise is a special case of GP. We now extend our model to
the general GP case:

P (t |X, θ, φ) = N [m(X, φ),K] (1)

where the covariance matrix K has elements

Knm ≡ cov [xn, xm] = k(xn, xm, θ)

The function k, known as the covariance function or kernel,
has parameters θ, and acts on a pair of inputs, returning the

covariance between the corresponding outputs. The specifi-
cation of the covariance function implies a probability dis-
tribution over functions, and we can draw samples from this
distribution by choosing a number of input points, writing
out the corresponding covariance matrix, and generating a
random Gaussian vector with this covariance matrix. Insert

reference to figure.

The mean function controls the deterministic compo-
nent of the model, whilst the covariance function controls
its stochastic component. Depending on the situation, the
former may simply be zero everywhere. Similarly, the latter
may represent a physical process of interest, or it may repre-
sent noise. A commonly used family of covariance functions
is the squared exponential kernel:

kSE(xn, xm, θ) = θ0 exp

�
θ1

D�

i=1

(xi,n − xi,m)2

�

where θ0 is an amplitude, and θ1 an inverse length scale
(this becomes more obvious if we write θ1 = 1/2l2). Pairs of
observations generated from the squared exponential kernel
are strongly mutually correlated if they lie near each other in
input space, and relatively uncorrelated if they are mutually
distant in input space. Multiple covariance functions can be
added or multipled together to model multiple stochastic
processes simultaneously occurring in the data. For example,
most GP models include an i.i.d. component:

k(xn, xm, θ, σ) = kSE(xn, xm, θ) + δnmσ2

where δ is the Kronecker delta function.
The joint probability given by equation 1 is the likeli-

hood of observing the targets t, given X, φ and θ. This likeli-
hood is already marginalised over all possible realisations of
the stochastic component, which satisfy the covariance ma-
trix specified by X and θ. In this sense, GPs are intrinsically
Bayesian. In fact, one can show that GP regression with the
squared exponential kernel is equivalent to Bayesian linear
regression with an infinite number of basis functions1. The
basis function weights can be seen as the parameters of the
model, and in Bayesian jargon, the elements of θ and φ are
all hyper-parameters of the model.

GPs as interpolation tools

Given a set of inputs X and observed targets t, we may wish
to make predictions for a new set of inputs X�. We refer

1 In the Bayesian linear basis equivalent of GP regression, the
basis function weights are subject to an automatic relevance de-
termination (ARD) priors. These priors are zero-mean Gaussians,
which force the weights to be zero unless there is evidence in the
data to support a non-zero value. This helps to explain how GPs
can be extremely flexible, yet avoid the over-fitting problem which
affects maximum-likelihood linear models. In linear basis mod-
elling, one seeks a global probability maximum in feature space,
where each coordinate represents the weight of a particular ba-
sis function. Working with a high-dimensional feature space is
problematic: it gives rise to degeneracy, numerical instability and
excessive computational demand. This problem is known as the
curse of dimensionality. GPs belong to a class of methods, which
circumvent this problem by working in function space rather than
feature space, and parametrising the functions in terms of their
covariance properties. This is known as the kernel trick.
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GAUSSIAN PROCESSES FOR REGRESSION

Models based on Gaussian processes are extensively used in
the machine learning community for Bayesian inference in
regression and classification problems. They can be seen as
an extension of kernel regression to probabilistic models. In
this appendix, we endeavour to give a very brief introduction
to the use of GPs for regression. Our explanations are based
on the textbooks by Rassmussen & Williams (2006) and
Bishop (2006), where the interested reader will find far more
complete and detailed information.

Introducing Gaussian processes
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D known inputs, or independent variables, and one output,
or dependent variable, which is measured with finite accu-
racy (it is trival to extend the same reasoning to more than
one, jointly observed outputs). In the case of observations
of a planetary transit in a single bandpass, for example, the
output is a flux or magnitude, and the inputs might include
the time at which the observations were made, but also an-
cillary data pertaining to the state of the instrument and
the observing conditions. In the machine learning literature,
observed outputs are usually referred to as targets, because
the quality of a model is measured by its ability to repro-
duce the targets, given the inputs, and we shall adopt this
convention here.

We write the inputs for the nth observation as a column
vector xn = (x1,n . . . , xD,n)T, and the corresponding target
value as tn. The N target values are then collated into a
column vector t = (t1, . . . , tN )T, and the D×N outputs into
a matrix X, with elements Xij = xi,j . A standard approach,
which most astronomers will be familiar with, is to model
the data as:

t = m(X, φ) + �

where m is a mean function with parameters φ, which acts
on the matrix of N input vectors, returning an N -element
vector, and � represents independent, identically distributed
(i.i.d.) noise

� ∼ N
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0, σ2I
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.

Here N [a,B] represents a multivariate Gaussian distribu-
tion with mean vector a and covariance matrix B, σ is the
standard deviation of the noise, and I is the identity matrix.
The joint probability distribution for a set of outputs t is
thus:

P (t |X, σ, φ) = N
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m(X, φ), σ2I

�

A Gaussian process (hereafter GP) is defined by the fact
that the joint distribution of any set of samples drawn from a
GP is a multivariate Gaussian distribution. Therefore, i.i.d.
noise is a special case of GP. We now extend our model to
the general GP case:

P (t |X, θ, φ) = N [m(X, φ),K] (1)

where the covariance matrix K has elements

Knm ≡ cov [xn, xm] = k(xn, xm, θ)

The function k, known as the covariance function or kernel,
has parameters θ, and acts on a pair of inputs, returning the

covariance between the corresponding outputs. The specifi-
cation of the covariance function implies a probability dis-
tribution over functions, and we can draw samples from this
distribution by choosing a number of input points, writing
out the corresponding covariance matrix, and generating a
random Gaussian vector with this covariance matrix. Insert
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The mean function controls the deterministic compo-
nent of the model, whilst the covariance function controls
its stochastic component. Depending on the situation, the
former may simply be zero everywhere. Similarly, the latter
may represent a physical process of interest, or it may repre-
sent noise. A commonly used family of covariance functions
is the squared exponential kernel:

kSE(xn, xm, θ) = θ0 exp
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θ1
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i=1

(xi,n − xi,m)2
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where θ0 is an amplitude, and θ1 an inverse length scale
(this becomes more obvious if we write θ1 = 1/2l2). Pairs of
observations generated from the squared exponential kernel
are strongly mutually correlated if they lie near each other in
input space, and relatively uncorrelated if they are mutually
distant in input space. Multiple covariance functions can be
added or multipled together to model multiple stochastic
processes simultaneously occurring in the data. For example,
most GP models include an i.i.d. component:

k(xn, xm, θ, σ) = kSE(xn, xm, θ) + δnmσ2

where δ is the Kronecker delta function.
The joint probability given by equation 1 is the likeli-

hood of observing the targets t, given X, φ and θ. This likeli-
hood is already marginalised over all possible realisations of
the stochastic component, which satisfy the covariance ma-
trix specified by X and θ. In this sense, GPs are intrinsically
Bayesian. In fact, one can show that GP regression with the
squared exponential kernel is equivalent to Bayesian linear
regression with an infinite number of basis functions1. The
basis function weights can be seen as the parameters of the
model, and in Bayesian jargon, the elements of θ and φ are
all hyper-parameters of the model.

GPs as interpolation tools

Given a set of inputs X and observed targets t, we may wish
to make predictions for a new set of inputs X�. We refer

1 In the Bayesian linear basis equivalent of GP regression, the
basis function weights are subject to an automatic relevance de-
termination (ARD) priors. These priors are zero-mean Gaussians,
which force the weights to be zero unless there is evidence in the
data to support a non-zero value. This helps to explain how GPs
can be extremely flexible, yet avoid the over-fitting problem which
affects maximum-likelihood linear models. In linear basis mod-
elling, one seeks a global probability maximum in feature space,
where each coordinate represents the weight of a particular ba-
sis function. Working with a high-dimensional feature space is
problematic: it gives rise to degeneracy, numerical instability and
excessive computational demand. This problem is known as the
curse of dimensionality. GPs belong to a class of methods, which
circumvent this problem by working in function space rather than
feature space, and parametrising the functions in terms of their
covariance properties. This is known as the kernel trick.
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complete and detailed information.

Introducing Gaussian processes

Consider a collection of N observations, each consisting of
D known inputs, or independent variables, and one output,
or dependent variable, which is measured with finite accu-
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cillary data pertaining to the state of the instrument and
the observing conditions. In the machine learning literature,
observed outputs are usually referred to as targets, because
the quality of a model is measured by its ability to repro-
duce the targets, given the inputs, and we shall adopt this
convention here.
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thus:
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A Gaussian process (hereafter GP) is defined by the fact
that the joint distribution of any set of samples drawn from a
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The function k, known as the covariance function or kernel,
has parameters θ, and acts on a pair of inputs, returning the
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cation of the covariance function implies a probability dis-
tribution over functions, and we can draw samples from this
distribution by choosing a number of input points, writing
out the corresponding covariance matrix, and generating a
random Gaussian vector with this covariance matrix. Insert
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The mean function controls the deterministic compo-
nent of the model, whilst the covariance function controls
its stochastic component. Depending on the situation, the
former may simply be zero everywhere. Similarly, the latter
may represent a physical process of interest, or it may repre-
sent noise. A commonly used family of covariance functions
is the squared exponential kernel:

kSE(xn, xm, θ) = θ0 exp
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where θ0 is an amplitude, and θ1 an inverse length scale
(this becomes more obvious if we write θ1 = 1/2l2). Pairs of
observations generated from the squared exponential kernel
are strongly mutually correlated if they lie near each other in
input space, and relatively uncorrelated if they are mutually
distant in input space. Multiple covariance functions can be
added or multipled together to model multiple stochastic
processes simultaneously occurring in the data. For example,
most GP models include an i.i.d. component:

k(xn, xm, θ, σ) = kSE(xn, xm, θ) + δnmσ2

where δ is the Kronecker delta function.
The joint probability given by equation 1 is the likeli-

hood of observing the targets t, given X, φ and θ. This likeli-
hood is already marginalised over all possible realisations of
the stochastic component, which satisfy the covariance ma-
trix specified by X and θ. In this sense, GPs are intrinsically
Bayesian. In fact, one can show that GP regression with the
squared exponential kernel is equivalent to Bayesian linear
regression with an infinite number of basis functions1. The
basis function weights can be seen as the parameters of the
model, and in Bayesian jargon, the elements of θ and φ are
all hyper-parameters of the model.

GPs as interpolation tools

Given a set of inputs X and observed targets t, we may wish
to make predictions for a new set of inputs X�. We refer

1 In the Bayesian linear basis equivalent of GP regression, the
basis function weights are subject to an automatic relevance de-
termination (ARD) priors. These priors are zero-mean Gaussians,
which force the weights to be zero unless there is evidence in the
data to support a non-zero value. This helps to explain how GPs
can be extremely flexible, yet avoid the over-fitting problem which
affects maximum-likelihood linear models. In linear basis mod-
elling, one seeks a global probability maximum in feature space,
where each coordinate represents the weight of a particular ba-
sis function. Working with a high-dimensional feature space is
problematic: it gives rise to degeneracy, numerical instability and
excessive computational demand. This problem is known as the
curse of dimensionality. GPs belong to a class of methods, which
circumvent this problem by working in function space rather than
feature space, and parametrising the functions in terms of their
covariance properties. This is known as the kernel trick.
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thus:
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cation of the covariance function implies a probability dis-
tribution over functions, and we can draw samples from this
distribution by choosing a number of input points, writing
out the corresponding covariance matrix, and generating a
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The mean function controls the deterministic compo-
nent of the model, whilst the covariance function controls
its stochastic component. Depending on the situation, the
former may simply be zero everywhere. Similarly, the latter
may represent a physical process of interest, or it may repre-
sent noise. A commonly used family of covariance functions
is the squared exponential kernel:
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where θ0 is an amplitude, and θ1 an inverse length scale
(this becomes more obvious if we write θ1 = 1/2l2). Pairs of
observations generated from the squared exponential kernel
are strongly mutually correlated if they lie near each other in
input space, and relatively uncorrelated if they are mutually
distant in input space. Multiple covariance functions can be
added or multipled together to model multiple stochastic
processes simultaneously occurring in the data. For example,
most GP models include an i.i.d. component:
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where δ is the Kronecker delta function.
The joint probability given by equation 1 is the likeli-

hood of observing the targets t, given X, φ and θ. This likeli-
hood is already marginalised over all possible realisations of
the stochastic component, which satisfy the covariance ma-
trix specified by X and θ. In this sense, GPs are intrinsically
Bayesian. In fact, one can show that GP regression with the
squared exponential kernel is equivalent to Bayesian linear
regression with an infinite number of basis functions1. The
basis function weights can be seen as the parameters of the
model, and in Bayesian jargon, the elements of θ and φ are
all hyper-parameters of the model.

GPs as interpolation tools

Given a set of inputs X and observed targets t, we may wish
to make predictions for a new set of inputs X�. We refer
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basis function weights are subject to an automatic relevance de-
termination (ARD) priors. These priors are zero-mean Gaussians,
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data to support a non-zero value. This helps to explain how GPs
can be extremely flexible, yet avoid the over-fitting problem which
affects maximum-likelihood linear models. In linear basis mod-
elling, one seeks a global probability maximum in feature space,
where each coordinate represents the weight of a particular ba-
sis function. Working with a high-dimensional feature space is
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nent of the model, whilst the covariance function controls
its stochastic component. Depending on the situation, the
former may simply be zero everywhere. Similarly, the latter
may represent a physical process of interest, or it may repre-
sent noise. A commonly used family of covariance functions
is the squared exponential kernel:

kSE(xn, xm, θ) = θ0 exp

�
θ1

D�

i=1

(xi,n − xi,m)2

�

where θ0 is an amplitude, and θ1 an inverse length scale
(this becomes more obvious if we write θ1 = 1/2l2). Pairs of
observations generated from the squared exponential kernel
are strongly mutually correlated if they lie near each other in
input space, and relatively uncorrelated if they are mutually
distant in input space. Multiple covariance functions can be
added or multipled together to model multiple stochastic
processes simultaneously occurring in the data. For example,
most GP models include an i.i.d. component:

k(xn, xm, θ, σ) = kSE(xn, xm, θ) + δnmσ2

where δ is the Kronecker delta function.
The joint probability given by equation 1 is the likeli-

hood of observing the targets t, given X, φ and θ. This likeli-
hood is already marginalised over all possible realisations of
the stochastic component, which satisfy the covariance ma-
trix specified by X and θ. In this sense, GPs are intrinsically
Bayesian. In fact, one can show that GP regression with the
squared exponential kernel is equivalent to Bayesian linear
regression with an infinite number of basis functions1. The
basis function weights can be seen as the parameters of the
model, and in Bayesian jargon, the elements of θ and φ are
all hyper-parameters of the model.

GPs as interpolation tools

Given a set of inputs X and observed targets t, we may wish
to make predictions for a new set of inputs X�. We refer

1 In the Bayesian linear basis equivalent of GP regression, the
basis function weights are subject to an automatic relevance de-
termination (ARD) priors. These priors are zero-mean Gaussians,
which force the weights to be zero unless there is evidence in the
data to support a non-zero value. This helps to explain how GPs
can be extremely flexible, yet avoid the over-fitting problem which
affects maximum-likelihood linear models. In linear basis mod-
elling, one seeks a global probability maximum in feature space,
where each coordinate represents the weight of a particular ba-
sis function. Working with a high-dimensional feature space is
problematic: it gives rise to degeneracy, numerical instability and
excessive computational demand. This problem is known as the
curse of dimensionality. GPs belong to a class of methods, which
circumvent this problem by working in function space rather than
feature space, and parametrising the functions in terms of their
covariance properties. This is known as the kernel trick.
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GAUSSIAN PROCESSES FOR REGRESSION

Models based on Gaussian processes are extensively used in
the machine learning community for Bayesian inference in
regression and classification problems. They can be seen as
an extension of kernel regression to probabilistic models. In
this appendix, we endeavour to give a very brief introduction
to the use of GPs for regression. Our explanations are based
on the textbooks by Rassmussen & Williams (2006) and
Bishop (2006), where the interested reader will find far more
complete and detailed information.

Introducing Gaussian processes

Consider a collection of N observations, each consisting of
D known inputs, or independent variables, and one output,
or dependent variable, which is measured with finite accu-
racy (it is trival to extend the same reasoning to more than
one, jointly observed outputs). In the case of observations
of a planetary transit in a single bandpass, for example, the
output is a flux or magnitude, and the inputs might include
the time at which the observations were made, but also an-
cillary data pertaining to the state of the instrument and
the observing conditions. In the machine learning literature,
observed outputs are usually referred to as targets, because
the quality of a model is measured by its ability to repro-
duce the targets, given the inputs, and we shall adopt this
convention here.

We write the inputs for the nth observation as a column
vector xn = (x1,n . . . , xD,n)T, and the corresponding target
value as tn. The N target values are then collated into a
column vector t = (t1, . . . , tN )T, and the D×N outputs into
a matrix X, with elements Xij = xi,j . A standard approach,
which most astronomers will be familiar with, is to model
the data as:

t = m(X, φ) + �

where m is a mean function with parameters φ, which acts
on the matrix of N input vectors, returning an N -element
vector, and � represents independent, identically distributed
(i.i.d.) noise

� ∼ N
�
0, σ2I

�
.

Here N [a,B] represents a multivariate Gaussian distribu-
tion with mean vector a and covariance matrix B, σ is the
standard deviation of the noise, and I is the identity matrix.
The joint probability distribution for a set of outputs t is
thus:

P (t |X, σ, φ) = N
�
m(X, φ), σ2I

�

A Gaussian process (hereafter GP) is defined by the fact
that the joint distribution of any set of samples drawn from a
GP is a multivariate Gaussian distribution. Therefore, i.i.d.
noise is a special case of GP. We now extend our model to
the general GP case:

P (t |X, θ, φ) = N [m(X, φ),K] (1)

where the covariance matrix K has elements

Knm ≡ cov [xn, xm] = k(xn, xm, θ)

The function k, known as the covariance function or kernel,
has parameters θ, and acts on a pair of inputs, returning the

covariance between the corresponding outputs. The specifi-
cation of the covariance function implies a probability dis-
tribution over functions, and we can draw samples from this
distribution by choosing a number of input points, writing
out the corresponding covariance matrix, and generating a
random Gaussian vector with this covariance matrix. Insert

reference to figure.

The mean function controls the deterministic compo-
nent of the model, whilst the covariance function controls
its stochastic component. Depending on the situation, the
former may simply be zero everywhere. Similarly, the latter
may represent a physical process of interest, or it may repre-
sent noise. A commonly used family of covariance functions
is the squared exponential kernel:

kSE(xn, xm, θ) = θ0 exp

�
θ1

D�

i=1

(xi,n − xi,m)2

�

where θ0 is an amplitude, and θ1 an inverse length scale
(this becomes more obvious if we write θ1 = 1/2l2). Pairs of
observations generated from the squared exponential kernel
are strongly mutually correlated if they lie near each other in
input space, and relatively uncorrelated if they are mutually
distant in input space. Multiple covariance functions can be
added or multipled together to model multiple stochastic
processes simultaneously occurring in the data. For example,
most GP models include an i.i.d. component:

k(xn, xm, θ, σ) = kSE(xn, xm, θ) + δnmσ2

where δ is the Kronecker delta function.
The joint probability given by equation 1 is the likeli-

hood of observing the targets t, given X, φ and θ. This likeli-
hood is already marginalised over all possible realisations of
the stochastic component, which satisfy the covariance ma-
trix specified by X and θ. In this sense, GPs are intrinsically
Bayesian. In fact, one can show that GP regression with the
squared exponential kernel is equivalent to Bayesian linear
regression with an infinite number of basis functions1. The
basis function weights can be seen as the parameters of the
model, and in Bayesian jargon, the elements of θ and φ are
all hyper-parameters of the model.

GPs as interpolation tools

Given a set of inputs X and observed targets t, we may wish
to make predictions for a new set of inputs X�. We refer

1 In the Bayesian linear basis equivalent of GP regression, the
basis function weights are subject to an automatic relevance de-
termination (ARD) priors. These priors are zero-mean Gaussians,
which force the weights to be zero unless there is evidence in the
data to support a non-zero value. This helps to explain how GPs
can be extremely flexible, yet avoid the over-fitting problem which
affects maximum-likelihood linear models. In linear basis mod-
elling, one seeks a global probability maximum in feature space,
where each coordinate represents the weight of a particular ba-
sis function. Working with a high-dimensional feature space is
problematic: it gives rise to degeneracy, numerical instability and
excessive computational demand. This problem is known as the
curse of dimensionality. GPs belong to a class of methods, which
circumvent this problem by working in function space rather than
feature space, and parametrising the functions in terms of their
covariance properties. This is known as the kernel trick.
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GAUSSIAN PROCESSES FOR REGRESSION

Models based on Gaussian processes are extensively used in
the machine learning community for Bayesian inference in
regression and classification problems. They can be seen as
an extension of kernel regression to probabilistic models. In
this appendix, we endeavour to give a very brief introduction
to the use of GPs for regression. Our explanations are based
on the textbooks by Rassmussen & Williams (2006) and
Bishop (2006), where the interested reader will find far more
complete and detailed information.

Introducing Gaussian processes

Consider a collection of N observations, each consisting of
D known inputs, or independent variables, and one output,
or dependent variable, which is measured with finite accu-
racy (it is trival to extend the same reasoning to more than
one, jointly observed outputs). In the case of observations
of a planetary transit in a single bandpass, for example, the
output is a flux or magnitude, and the inputs might include
the time at which the observations were made, but also an-
cillary data pertaining to the state of the instrument and
the observing conditions. In the machine learning literature,
observed outputs are usually referred to as targets, because
the quality of a model is measured by its ability to repro-
duce the targets, given the inputs, and we shall adopt this
convention here.

We write the inputs for the nth observation as a column
vector xn = (x1,n . . . , xD,n)T, and the corresponding target
value as tn. The N target values are then collated into a
column vector t = (t1, . . . , tN )T, and the D×N outputs into
a matrix X, with elements Xij = xi,j . A standard approach,
which most astronomers will be familiar with, is to model
the data as:

t = m(X, φ) + �

where m is a mean function with parameters φ, which acts
on the matrix of N input vectors, returning an N -element
vector, and � represents independent, identically distributed
(i.i.d.) noise

� ∼ N
�
0, σ2I

�
.

Here N [a,B] represents a multivariate Gaussian distribu-
tion with mean vector a and covariance matrix B, σ is the
standard deviation of the noise, and I is the identity matrix.
The joint probability distribution for a set of outputs t is
thus:

P (t |X, σ, φ) = N
�
m(X, φ), σ2I

�

A Gaussian process (hereafter GP) is defined by the fact
that the joint distribution of any set of samples drawn from a
GP is a multivariate Gaussian distribution. Therefore, i.i.d.
noise is a special case of GP. We now extend our model to
the general GP case:

P (t |X, θ, φ) = N [m(X, φ),K] (1)

where the covariance matrix K has elements

Knm ≡ cov [xn, xm] = k(xn, xm, θ)

The function k, known as the covariance function or kernel,
has parameters θ, and acts on a pair of inputs, returning the

covariance between the corresponding outputs. The specifi-
cation of the covariance function implies a probability dis-
tribution over functions, and we can draw samples from this
distribution by choosing a number of input points, writing
out the corresponding covariance matrix, and generating a
random Gaussian vector with this covariance matrix. Insert

reference to figure.

The mean function controls the deterministic compo-
nent of the model, whilst the covariance function controls
its stochastic component. Depending on the situation, the
former may simply be zero everywhere. Similarly, the latter
may represent a physical process of interest, or it may repre-
sent noise. A commonly used family of covariance functions
is the squared exponential kernel:

kSE(xn, xm, θ) = θ0 exp

�
θ1

D�

i=1

(xi,n − xi,m)2

�

where θ0 is an amplitude, and θ1 an inverse length scale
(this becomes more obvious if we write θ1 = 1/2l2). Pairs of
observations generated from the squared exponential kernel
are strongly mutually correlated if they lie near each other in
input space, and relatively uncorrelated if they are mutually
distant in input space. Multiple covariance functions can be
added or multipled together to model multiple stochastic
processes simultaneously occurring in the data. For example,
most GP models include an i.i.d. component:

k(xn, xm, θ, σ) = kSE(xn, xm, θ) + δnmσ2

where δ is the Kronecker delta function.
The joint probability given by equation 1 is the likeli-

hood of observing the targets t, given X, φ and θ. This likeli-
hood is already marginalised over all possible realisations of
the stochastic component, which satisfy the covariance ma-
trix specified by X and θ. In this sense, GPs are intrinsically
Bayesian. In fact, one can show that GP regression with the
squared exponential kernel is equivalent to Bayesian linear
regression with an infinite number of basis functions1. The
basis function weights can be seen as the parameters of the
model, and in Bayesian jargon, the elements of θ and φ are
all hyper-parameters of the model.

GPs as interpolation tools

Given a set of inputs X and observed targets t, we may wish
to make predictions for a new set of inputs X�. We refer

1 In the Bayesian linear basis equivalent of GP regression, the
basis function weights are subject to an automatic relevance de-
termination (ARD) priors. These priors are zero-mean Gaussians,
which force the weights to be zero unless there is evidence in the
data to support a non-zero value. This helps to explain how GPs
can be extremely flexible, yet avoid the over-fitting problem which
affects maximum-likelihood linear models. In linear basis mod-
elling, one seeks a global probability maximum in feature space,
where each coordinate represents the weight of a particular ba-
sis function. Working with a high-dimensional feature space is
problematic: it gives rise to degeneracy, numerical instability and
excessive computational demand. This problem is known as the
curse of dimensionality. GPs belong to a class of methods, which
circumvent this problem by working in function space rather than
feature space, and parametrising the functions in terms of their
covariance properties. This is known as the kernel trick.
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A very simple example12 N. P. Gibson et al.

Figure A1. Top: Examples of random functions drawn from a GP with a squared exponential covariance kernel. The left and right plots
have hyperparameters {θ0, θ1} = {25, 2}, and {θ0, θ1} = {25, 0.5}, respectively. The dark and light grey shaded areas represent the 1
and 2 σ boundaries of the distribution. Bottom: The predictive distributions generated after adding some training data and conditioning
using the same hyperparameters as the corresponding plots above, with the addition of a white noise term (σ2 = 1). The coloured lines
are now random vectors drawn from the posterior distribution.

type-II maximum likelihood. This involves fixing the covari-

ance hyperparameters at their maximum likelihood values,

and marginalising over the remaining mean function hyper-

parameters of interest. This is a valid approximation when

the posterior distribution is sharply peaked at its maximum

with respect to the covariance hyperparameters, and should

give similar results to the full marginalisation.

Fig. A2 gives examples of GP regression using a squared

exponential covariance function, after optimising the hyper-

parameters via a Nelder-Mead simplex algorithm (see e.g.

Press et al. 1992). The training data (red points) were gen-

erated from various functions (shown by the green dashed

line) with the addition of i.i.d noise. All were modelled using

a zero-mean function, with the exception of the transit func-

tion at the bottom left, which used a transit mean function.

In the top left the data were generated from a straight line

function. The marginal likelihood strongly favours functions

with a longer length scale, and the GP is able to predict the

underlying function both when interpolating and extrapolat-

ing away from the data. The top right data was generated

from a quadratic function, and again the GP reliably inter-

polates the underlying function. However, as the length scale

is now shorter, the predictive distribution veers towards the

prior more quickly outside the training data. These two ex-

amples show that GPs with squared exponential kernels are

very good at interpolating data sets providing the data is

generated from a smooth function. The bottom left plot

shows data drawn from a transit mean function with sinu-

soidal and Gaussian time-domain ‘systematics’ added. The

GP model has a transit mean function, and the additional

‘systematics’ are modelled by the GP. Finally, the bottom

right plot shows data drawn from a step function. In this

case the GP interpolation is less reliable. This is because

the squared exponential function implies smooth functions.

A more appropriate choice of covariance kernel is required

for such functions (e.g. Garnett et al. 2010). Indeed, a wide

choice of covariance kernels exist which effectively model

periodic, quasi-periodic and step functions (see Rasmussen

& Williams 2006), enabling GPs to be a very flexible and

powerful framework for modelling data in the absence of a

parametric model.
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White noise is with standard deviation σ is represented bt:

kWN(t, t�) = σ2I, (6)

where I is the identity matrix.

The squared exponential (SE) kernel is given by:

kSE(t, t�) = A2 exp
�
− (t − t�)2

2l2

�
(7)

where A is an amplitude and l is a length scale. This gives rather smooth variations with a typical time-scale of l
and r.m.s. amplitude σ.

The rational quadratic (RQ) kernel is given by:

kRQ(t, t�) = A2
�
1 +

(t − t�)2

2αl2

�−α
(8)

where α is known as the index. Rasmussen & Williams (2006) show that this is equivalent to a scale mixture of
SE kernels with different length scales, distributed according to a Beta distribution with parameters α and l−2. This
gives variations with a range of time-scales, the distribution peaking around l but extending to significantly longer
period (but remaining rather smooth). When alpha→ ∞, the RQ reduces to the SE with length scale l.

Examples of functions drawn from these 3 kernels are shown in Figure 3. There are many more types of covariance
functions in use, including some (such as the Matèrn family) which are better suited to model rougher, less smooth
variations. However, the SE and RQ kernels already offer a great degree of freedom with relatively few hyper-
parameters, and covariance functions based on these are sufficient to model the data of interest satisfactorily.

4.2 Periodic and quasi-periodic kernels

A periodic covariance function can be constructed from any kernel involving the squared distance (t − t�)2 by
replacing the latter with sin2[π(t − t�)/P], where P is the period. For example, the following:

kper,SE(t, t�) = A2 exp
�
−sin2[π(t − t�)/P]

2L2

�
(9)

gives periodic variations which closely resemble samples drawn from a squared exponential GP within a given
kernel. The length scale L is now relative to the period, and letting L → ∞ gives sinusoidal variations, whilst
increasingly small values of L give periodic variations with increasingly complex harmonic content.

Similar periodic functions could be constructed from any kernel. Other periodic functions could also be used, so
long as they give rise to a symmetric, positive definite covariance matrix – sin2 is merely the simplest.

As described in Rasmussen & Williams (2006), valid covariance functions can be constructed by adding or multi-
plying simpler covariance functions. Thus, we can obtain a quasi periodic kernel simply by multiplying a periodic
kernel with one of the basic kernels described above. The latter then specifies the rate of evolution of periodic
signal. For example, we can multiply equation 9 with yet another SE kernel:

kQP,SE(t, t�) = A2 exp
�
−sin2[π(t − t�)/P]

2L2 − (t − t�)2

2l2

�
(10)

to model a quasi-periodic signal with a single evolutionary time-scale l.
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Figure A1. Top: Examples of random functions drawn from a GP with a squared exponential covariance kernel. The left and right plots
have hyperparameters {θ0, θ1} = {25, 2}, and {θ0, θ1} = {25, 0.5}, respectively. The dark and light grey shaded areas represent the 1
and 2 σ boundaries of the distribution. Bottom: The predictive distributions generated after adding some training data and conditioning
using the same hyperparameters as the corresponding plots above, with the addition of a white noise term (σ2 = 1). The coloured lines
are now random vectors drawn from the posterior distribution.

type-II maximum likelihood. This involves fixing the covari-

ance hyperparameters at their maximum likelihood values,

and marginalising over the remaining mean function hyper-

parameters of interest. This is a valid approximation when

the posterior distribution is sharply peaked at its maximum

with respect to the covariance hyperparameters, and should

give similar results to the full marginalisation.

Fig. A2 gives examples of GP regression using a squared

exponential covariance function, after optimising the hyper-

parameters via a Nelder-Mead simplex algorithm (see e.g.

Press et al. 1992). The training data (red points) were gen-

erated from various functions (shown by the green dashed

line) with the addition of i.i.d noise. All were modelled using

a zero-mean function, with the exception of the transit func-

tion at the bottom left, which used a transit mean function.

In the top left the data were generated from a straight line

function. The marginal likelihood strongly favours functions

with a longer length scale, and the GP is able to predict the

underlying function both when interpolating and extrapolat-

ing away from the data. The top right data was generated

from a quadratic function, and again the GP reliably inter-

polates the underlying function. However, as the length scale

is now shorter, the predictive distribution veers towards the

prior more quickly outside the training data. These two ex-

amples show that GPs with squared exponential kernels are

very good at interpolating data sets providing the data is

generated from a smooth function. The bottom left plot

shows data drawn from a transit mean function with sinu-

soidal and Gaussian time-domain ‘systematics’ added. The

GP model has a transit mean function, and the additional

‘systematics’ are modelled by the GP. Finally, the bottom

right plot shows data drawn from a step function. In this

case the GP interpolation is less reliable. This is because

the squared exponential function implies smooth functions.

A more appropriate choice of covariance kernel is required

for such functions (e.g. Garnett et al. 2010). Indeed, a wide

choice of covariance kernels exist which effectively model

periodic, quasi-periodic and step functions (see Rasmussen

& Williams 2006), enabling GPs to be a very flexible and

powerful framework for modelling data in the absence of a

parametric model.
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The rational quadratic (RQ) kernel is given by:

kRQ(t, t�) = A2
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1 +
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where α is known as the index. Rasmussen & Williams (2006) show that this is equivalent to a scale mixture of
SE kernels with different length scales, distributed according to a Beta distribution with parameters α and l−2. This
gives variations with a range of time-scales, the distribution peaking around l but extending to significantly longer
period (but remaining rather smooth). When alpha→ ∞, the RQ reduces to the SE with length scale l.

Examples of functions drawn from these 3 kernels are shown in Figure 3. There are many more types of covariance
functions in use, including some (such as the Matèrn family) which are better suited to model rougher, less smooth
variations. However, the SE and RQ kernels already offer a great degree of freedom with relatively few hyper-
parameters, and covariance functions based on these are sufficient to model the data of interest satisfactorily.
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A periodic covariance function can be constructed from any kernel involving the squared distance (t − t�)2 by
replacing the latter with sin2[π(t − t�)/P], where P is the period. For example, the following:
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gives periodic variations which closely resemble samples drawn from a squared exponential GP within a given
kernel. The length scale L is now relative to the period, and letting L → ∞ gives sinusoidal variations, whilst
increasingly small values of L give periodic variations with increasingly complex harmonic content.

Similar periodic functions could be constructed from any kernel. Other periodic functions could also be used, so
long as they give rise to a symmetric, positive definite covariance matrix – sin2 is merely the simplest.

As described in Rasmussen & Williams (2006), valid covariance functions can be constructed by adding or multi-
plying simpler covariance functions. Thus, we can obtain a quasi periodic kernel simply by multiplying a periodic
kernel with one of the basic kernels described above. The latter then specifies the rate of evolution of periodic
signal. For example, we can multiply equation 9 with yet another SE kernel:
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Figure A1. Top: Examples of random functions drawn from a GP with a squared exponential covariance kernel. The left and right plots
have hyperparameters {θ0, θ1} = {25, 2}, and {θ0, θ1} = {25, 0.5}, respectively. The dark and light grey shaded areas represent the 1
and 2 σ boundaries of the distribution. Bottom: The predictive distributions generated after adding some training data and conditioning
using the same hyperparameters as the corresponding plots above, with the addition of a white noise term (σ2 = 1). The coloured lines
are now random vectors drawn from the posterior distribution.

type-II maximum likelihood. This involves fixing the covari-

ance hyperparameters at their maximum likelihood values,

and marginalising over the remaining mean function hyper-

parameters of interest. This is a valid approximation when

the posterior distribution is sharply peaked at its maximum

with respect to the covariance hyperparameters, and should

give similar results to the full marginalisation.

Fig. A2 gives examples of GP regression using a squared

exponential covariance function, after optimising the hyper-

parameters via a Nelder-Mead simplex algorithm (see e.g.

Press et al. 1992). The training data (red points) were gen-

erated from various functions (shown by the green dashed

line) with the addition of i.i.d noise. All were modelled using

a zero-mean function, with the exception of the transit func-

tion at the bottom left, which used a transit mean function.

In the top left the data were generated from a straight line

function. The marginal likelihood strongly favours functions

with a longer length scale, and the GP is able to predict the

underlying function both when interpolating and extrapolat-

ing away from the data. The top right data was generated

from a quadratic function, and again the GP reliably inter-

polates the underlying function. However, as the length scale

is now shorter, the predictive distribution veers towards the

prior more quickly outside the training data. These two ex-

amples show that GPs with squared exponential kernels are

very good at interpolating data sets providing the data is

generated from a smooth function. The bottom left plot

shows data drawn from a transit mean function with sinu-

soidal and Gaussian time-domain ‘systematics’ added. The

GP model has a transit mean function, and the additional

‘systematics’ are modelled by the GP. Finally, the bottom

right plot shows data drawn from a step function. In this

case the GP interpolation is less reliable. This is because

the squared exponential function implies smooth functions.

A more appropriate choice of covariance kernel is required

for such functions (e.g. Garnett et al. 2010). Indeed, a wide

choice of covariance kernels exist which effectively model

periodic, quasi-periodic and step functions (see Rasmussen

& Williams 2006), enabling GPs to be a very flexible and

powerful framework for modelling data in the absence of a

parametric model.

c� 2002 RAS, MNRAS 000, 1–12

from Gibson et al. (submitted)

similar marginal likelihood, 
but different predictive power

White noise is with standard deviation σ is represented bt:

kWN(t, t�) = σ2I, (6)

where I is the identity matrix.

The squared exponential (SE) kernel is given by:

kSE(t, t�) = A2 exp
�
− (t − t�)2

2l2

�
(7)

where A is an amplitude and l is a length scale. This gives rather smooth variations with a typical time-scale of l
and r.m.s. amplitude σ.

The rational quadratic (RQ) kernel is given by:

kRQ(t, t�) = A2
�
1 +

(t − t�)2

2αl2

�−α
(8)

where α is known as the index. Rasmussen & Williams (2006) show that this is equivalent to a scale mixture of
SE kernels with different length scales, distributed according to a Beta distribution with parameters α and l−2. This
gives variations with a range of time-scales, the distribution peaking around l but extending to significantly longer
period (but remaining rather smooth). When alpha→ ∞, the RQ reduces to the SE with length scale l.

Examples of functions drawn from these 3 kernels are shown in Figure 3. There are many more types of covariance
functions in use, including some (such as the Matèrn family) which are better suited to model rougher, less smooth
variations. However, the SE and RQ kernels already offer a great degree of freedom with relatively few hyper-
parameters, and covariance functions based on these are sufficient to model the data of interest satisfactorily.

4.2 Periodic and quasi-periodic kernels

A periodic covariance function can be constructed from any kernel involving the squared distance (t − t�)2 by
replacing the latter with sin2[π(t − t�)/P], where P is the period. For example, the following:

kper,SE(t, t�) = A2 exp
�
−sin2[π(t − t�)/P]

2L2

�
(9)

gives periodic variations which closely resemble samples drawn from a squared exponential GP within a given
kernel. The length scale L is now relative to the period, and letting L → ∞ gives sinusoidal variations, whilst
increasingly small values of L give periodic variations with increasingly complex harmonic content.

Similar periodic functions could be constructed from any kernel. Other periodic functions could also be used, so
long as they give rise to a symmetric, positive definite covariance matrix – sin2 is merely the simplest.

As described in Rasmussen & Williams (2006), valid covariance functions can be constructed by adding or multi-
plying simpler covariance functions. Thus, we can obtain a quasi periodic kernel simply by multiplying a periodic
kernel with one of the basic kernels described above. The latter then specifies the rate of evolution of periodic
signal. For example, we can multiply equation 9 with yet another SE kernel:

kQP,SE(t, t�) = A2 exp
�
−sin2[π(t − t�)/P]

2L2 − (t − t�)2

2l2

�
(10)

to model a quasi-periodic signal with a single evolutionary time-scale l.
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Example application 1: 
instrumental systematics in transmission spectra

See Neale Gibson’s talk



Example application 2: 
modelling HD 189733b’s OOT light curve

5 Modelling the HD 189733 light curve

5.1 Choice of model

We modelled the HD 189733 data with all the individual kernels detailed in section 4, as well as a number of
different combinations. We initially trained the GP on all three datasets, but the MOST data had virtually no effect
on the results (mainly because they do not overlap with any of the transit observations of interest), so we did not use
the MOST data for the final calculations. We used LOO-CV to compare different kernels, but we also performed a
careful visual examination of the results, generative predictive distributions over the entire monitoring period and
over individual seasons. Interestingly, we note that, in practice, LOO-CV systematically favours the simplest kernel
which appears to give good results by eye.

We experimented with various combinations of SE and RQ kernels to form quasi-periodic models, and found that
using an RQ kernel for the evolutionary term significantly improves the LOO-CV pseudo-likelihood relative to
an SE-based evolutionary term. It makes very little difference to the mean of the predictive distribution when the
observations are well-sampled, but it vastly increases the predictive power of the GP away from observations, as it
allows for a small amount of covariance on long time-scales, even if the dominant evolution time-scale is relatively
short. On the other hand, we were not able to distinguish between SE and RQ kernels for the periodic term (the two
give virtually identical best-fit marginal likelihoods and pseudo-likelihoods), and therefore opted for the simpler
SE kernel.

To describe the observational noise, we experimented with a separate, additive SE kernel as well as a white noise
term. However, we found that this did not significantly improve the marginal or pseudo-likelihood, and the best-fit
length-scale was comparable to the typical interval between consecutive data points. We therefore reverted to a
white-noise term only. The final kernel was thus:

kQP,mixed(t, t�) = A2 exp
�
−sin2[π(t − t�)/P]

2L2

�
×
�
1 +

(t − t�)2

2αl2

�−α
+ σ2

I. (11)

The best-fit hyperparameters were A = 6.68 mmag, P = 11.86 days, L = 0.91, α = 0.23, l = 17.80 days, and
σ = 2.1 mmag. Our period estimate is in excellent agreement with Henry & Winn (2008). We note that very similar
best-fit hyper-parameters were obtained with the other kernels we tried (where those kernel shared equivalent hyper-
parameters). The relatively long periodic length-scale L indicates that the variations are dominated by fairly large
active regions. The evolutionary term has a relatively short time-scale l (about 1.5 times the period) but a relatively
shallow index α, which is consistent with the notion that individual active regions evolve relatively fast, but that
there are preferentially active longitudes where active regions tend to be located (as inferred from better-sampled
long-duration CoRoT light curves for similarly active stars, e.g. by Lanza et al.).

Note that we should really treat the noise term(s) separately for each dataset, and the constant relative offsets (or
linear trends where applicable) as parameters of the mean function. However, we doubt this would make a big
difference to the results.

5.2 Results

Once the GP has been trained and conditioned on the available data, we can compute a predictive distribution
for any desired set of input times. This predictive distribution is a multi-variate Gaussian, specified by a mean
vector and a covariance matrix (see e.g. Appendix A2 of Gibson et al. 2011 for details). Here we are interested
in estimating the difference between the predicted flux at two input times, which is just the difference between
the corresponding elements of the mean fector. We also want an estimate of the uncertainty associated with this
predicted difference. This can be obtained directly from the covariance matrix of the predictive distribution:

σ2
y2 |y1
= cov(x1, x1) + cov(x2, x2) − 2cov(x1, x2). (12)
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rotation rate, spot distribution and evolution...
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Python GP module under development


