New Measurements of Spin-Orbit Angles in Planetary and Binary Star Systems

Simon Albrecht

Josh Winn, Teruyuki Hirano, Roberto Sanchis-Ojeda (MIT), Guillermo Torres, Josh Carter (CfA), Dan Fabrycky (UCSC), Johny Setiawan (MPIA), Sabine Reffert, Andreas Quirrenbach (U. Heidelberg), Ignas Snellen, Ernst de Mooij (U. Leiden)

13 September 2011

The Planet Finder Spectrograph

Magellan Clay 6.5 m Telescope

Planet Finder Spectrograph

PFS team: Paul Butler, Jeff Crane, Steve Shectman, Ian Thompson

WASP-7: hot misaligned

• Period = 4.9 days; • $M_{Planet} = 0.9 M_{Jupiter}$

What we would expect if $v \sin i_{\star} \approx 0 \,\mathrm{km}\,\mathrm{s}^{-1}$?

- \Rightarrow no RM signal
- \Rightarrow no proj. obliquity preferred

What we would expect if $v \sin i_{\star} \approx 0 \,\mathrm{km}\,\mathrm{s}^{-1}$?

Need to isolate RM signal

- $\blacktriangleright \text{ subtract systemic velocity} \rightarrow \textbf{offset}$
- subtract orbital RVs $(K_{\star}) \rightarrow$ slope

 \Rightarrow high-pass filter

Need to isolate RM signal

- \blacktriangleright subtract systemic velocity \rightarrow offset
- subtract orbital RVs $(K_{\star}) \rightarrow$ slope

 \Rightarrow high-pass filter

Need to isolate RM signal

- \blacktriangleright subtract systemic velocity \rightarrow offset
- subtract orbital RVs $(K_{\star}) \rightarrow$ slope

 \Rightarrow high-pass filter

WASP-2: misaligned?

WASP-2: misaligned?

WASP-2: fit to mock data without RM effect

WASP-2: new observations

RV scatter during transit and out of transit similar ⇒ no RM effect measured ⇒ obliquity is undetermined (Albrecht et al. ApJ, 2011)

Projected Obliquity: new measurements added

Radiative Envelope

Convective Envelope

Tidal forces seem to be important

Projected Obliquity

Radiative Envelope

Convective Envelope

Tidal forces \Rightarrow also the eccentricity should be affected

Orbital Eccentricity

systems with low eccentricities can have high obliquities

Orbital Eccentricity

double star systems: $\tau_{\rm circ} > \tau_{\rm sync}$

Orbital Eccentricity

Obliquity and eccentricity function of mass ratio?

see also Johnson et al. (2009), Hébrard et al. (2010, 2011)

Orbital eccentricity

- Radiative Envelope
- Convective Envelope

formulas from Zahn (1977)

Evidence for tidal forces

What about close binary stars?

- The RM effect was first measured in binary systems (1924), but only a few quantitative RM results
- Formation of close binaries still not completely understood

Let's take the Rossiter-McLaughlin effect back to its roots

Binaries Are Not Always Neatly Aligned

• V1143 Cyg: aligned (Albrecht et al. A&A 2007)

(Hamilton spectrograph 0.6 m)

• DI Her: strongly misaligned (Albrecht et al. Nature, 2009)

(SOPHIE OHP)

• NY Cep: aligned (Albrecht et al. ApJ, 2011b)

(SOPHIE OHP)

α CrB: primary aligned $\beta_{\rm p}=2\pm4\,^\circ$

(Hamilton spectrograph 0.6 m)

• α CrB: aligned – Maybe short period, circular systems?

CV Velorum: primary misaligned $\beta_{\rm p} = -42 \pm 10^{\circ}$

• Short period (6.9 days); • circular orbit (e = 0)

Conclusions

exoplanets:

- Tidal forces are important
- Wide distribution in obliquities and eccentricities

stellar binaries:

- Misalignment might be common
- Alignment seems not to be a simple function of period or eccentricity