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XDQSO target selection (Bovy et al., 1011.6392)



lots of bad data is equal to a bit of good data





Hogg’s Decadal Survey

� Software is going to be much more productive, per dollar,

than anything else in astrophysics!



the new reality

� all our goals are getting substantially more ambitious every

ten years

� funding is flat

� the era of under-budgeting and over-designing (and getting

away with it) is over

� many observational programs will lead to upper limits or bare

detections

� example: JWST will take low s/n spectra of a couple of

Earth-like exoplanets (in the most optimistic scenario) over its
entire mission lifetime.

� existing (and aging) data will become far more valuable

� example: The sky has been imaged thousands of times already

in many bands; these data have never seriously been assembled

and analyzed coherently.



we need new tools

� How do we move all of the information from all of the data

(ever taken) to the quantities of interest?

� How do we get high s/n information about what we want
when every individual datum is very noisy?

� It’s all about tools.



conclusions

� software, software, software, and applied math

� lots of bad data is equal to a bit of good data

� modeling beats supervised classification

� point estimates are bad, models are good

� heirarchical modeling will require MCMC

� we can find populations, no member of which is individually

detectable



modeling beats supervised classification
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what’s wrong with supervised classification?

� support vector machines, boosting, deep learning

� these are all awesome

� they require that test data have the same statistical and error

properties as training data

� never true!

� they require that all features be measured for all data points

� never true!
� (If you know enough about your data to fix this problem, then

just write down a likelihood!)



point estimates are bad, models are good



faint proper motions (Lang et al. 0808.4004)
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faint proper motions (Lang et al. 0808.4004)

� If we had only a catalog, we would have failed.

� If we had only a coadd, we would have failed.



what’s wrong with LSST and PanSTARRS?

� reducing data with point estimates

� building catalogs from “co-adds” with point estimates

� catalog matching

� All of these throw away information. Does it matter?
� Lang and I are betting it does: theTractor.org



The Tractor (Lang et al.)



The Tractor (Lang et al.)



heirarchical modeling will require MCMC



the Exoplanet Theory of Everything

� different techniques find different planets

� radial velocity, transit, direct detection, astrometry,

microlensing

� completeness or selection functions are smooth functions of

exoplanet and host-star properties

� most observations show no clearly detectable planet

� Earth-like planets are in a “bitter spot” for all observational

techniques

� how do we take the (literally) billions of data points and

obtain the best possible picture of the full exoplanet

population?

� distributions in orbital and planetary (composition, size)

parameters

� distributions for multiplicity and “architecture”

� all as a function of host-star properties

� plus all the individual systems measured as well as possible
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Bart (Foreman-Mackey et al., forthcoming)

� built on very successful emcee package (Foreman-Mackey et al.,

1202.3665)

� designed for exoplanet measurement and discovery of false

positives

� very easy to use

import bart

# Initialize a planet.
planet = bart.Planet(r=0.01 , a=21.3 , t0 =3.85)
planet.parameters += [bart.parameters.Parameter(r"$r$", "r"),

bart.parameters.LogParameter(r"$a$", "a")]

# Initialize the star.
ldp = bart.kepler.fiducial_ldp(teff =6438 , logg =4.28 , feh =0.0)
star = bart.Star(mass=planet.get_mstar (12.4138) , ldp=ldp)

# Set up the system.
system = bart.PlanetarySystem(star)
system.parameters.append(bart.parameters.CosParameter(r"$i$", "iobs"))
system.add_planet(planet)

# Add data and fit.
system.add_dataset(bart.KeplerDataset("path/to/kepler/data/lc.fits"))
system.fit (2000)



exoplanets around white dwarfs (Schiminovich, Lang, Hogg)
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the undetectable can be measured











































hierarchical population detection

� family of priors p(ωn|α), parameterized by some α

�

p({Dn}Nn=1 |α) =

N�

n=1

�
dωn p(Dn|ωn) p(ωn|α) (1)

� if you believe there can be a likelihood, then you believe

there can be a marginalized likelihood

� the fact that each internal p(Dn|ωn) contains no clear peak

(no clear object detection at all) doesn’t change anything!









hierarchical inference: What does it require?

� accurate likelihood functions

� accurate noise models, or parameterized noise models

� fast inference

� self-tuning MCMC (like emcee; Foreman-Mackey et al.,

1202.3665)

� robustness to multimodal likelihood functions

� concept of self-calibration

� calibration and noise parameters are not different from

astrophysical parameters

� racks and racks of metal

� (it can’t be done in “map–reduce” framework)



hierarchical inference: Why does it work?

� The marginalized likelihood is large when there is high prior

probability in locations where there is high likelihood.

� When likelihoods are broad, the best prior is the most

concentrated prior that is “consistent with” all
individual-object likelihood functions.

� The operation is a heteroskedastic deconvolution.
� (in modern parlance, a “deconvolution” is always the result of

fitting a generative or forward model)



conclusions

� software, software, software, and applied math

� lots of bad data is equal to a bit of good data

� modeling beats supervised classification

� point estimates are bad, models are good

� heirarchical modeling will require MCMC

� we can find populations, no member of which is individually

detectable


