Radio Pulsars in Globular Clusters

Scott Ransom

National Radio Astronomy Observatory Charlottesville, VA

Why pulsars in globular clustere?

- Observations of multiple MSPs in a single cluster provide a wide variety of science about the pulsars, their companions, and the clusters where they live
 - Intracluster gas and/or ISM
 - Freire et al. 2001, ApJL, 557, 105
 - M/L ratio limits and/or probes for central IMBH Jenet, Creighton, & Lommen, 2005, ApJL, 627, 125
 - Binary evolution and dynamics and many others Freire et al. 2001, MNRAS, 326, 901
 Freire et al. 2003, MNRAS, 340, 135
- Truly exotic objects are predicted to exist:
 i.e. sub-MSPs, PSR-BH binaries, MSP-MSP binaries

Searching for Cluster Pulsars (is hard)

- Globular cluster pulsars are:
 - Intrinsically weak radio sources
 - Often in <u>binaries</u> (show Doppler accelerations)
 - <u>Distant</u> (weaker, large dispersion (DM), scatter-broadening)

Sensitivity $\propto A T_{tot}^{-1} t_{int}^{1/2} \Delta v^{1/2}$

Computations $\propto f_{spin}^{3} t_{int}^{2}$

- Solutions:
 - Use large telescopes and sensitive receivers
 - Use longer integration times
 - Use advanced algorithms to adaptively <u>remove interference</u>
 - Use specialized <u>binary search algorithms</u> to improve sensitivity to weak binary MSPs (the hardest PSRs to detect)
 - Use <u>lots of CPU</u> cycles!

Status as of early 2004: A Pulsar Renaissance

• 46 PSRs from 2000-2004

- New/upgraded telescopes observing at 1400 MHz
- "Beneficial" scintillation
- Advanced algorithms
- Lots of computing
- Most successful by far is 47 Tucanae
 - 22 MSPs (14 binaries)
 - 1200+ hrs of Parkes time
 - Camilo et al. 2000; Freire et al. 2001, 2003; Lorimer 2003

Globular Cluster

Terzan 5

- Very massive, and metal rich cluster with a high central density
- Verbunt and Hut (1987) calculated that it had one of the highest interaction rates of any cluster
- Distance ~ 8.7 ± 2 kpc (Cohn et al. 2001)
- Within ~ 1 kpc of Galactic center (I,b) = (3.8°, 1.7°)
- Interstellar electrons (i.e. Dispersion Measure or DM) make deep searches quite difficult (e.g. scattering and smearing)

Terzan 5

- Very massive, and metal rich cluster with a high central density
- Verbunt and Hut (1987) calculated that it had one of the highest interaction rates of any cluster
- Distance ~ 8.7 ± 2 kpc (Cohn et al. 2001)
- Within ~ 1 kpc of Galactic center (I,b) = (3.8°, 1.7°)
- Interstellar electrons (i.e. Dispersion Measure or DM) make deep searches quite difficult (e.g. scattering and smearing)

- Deep VLA observations by Fruchter and Goss (1990, 2000) found point sources and ~ 2 mJy of diffuse emission in core: 60-200 MSPs?
- From 1990-2001, though, only 3 MSPs were discovered

Why look bulge clusters with the GBT? <u>5-20 times</u> more sensitive to MSPs than earlier searches

- Gain (i.e. area) is almost 3 times larger than Parkes
- "Clean" 600 MHz of bandwidth at low S-band (v_{ctr} =1950 Mhz)
 - Reduces DM-smearing ($\propto \nu^{-3}$) and scatter-broadening ($\propto \nu^{-4.4}$)
 - But pulsars tend to be steep spectrum...
- New SPIGOT card (82-µs sampling, 1024 x 16-bit lags)
 - *Soon*: 82-μs sampling, 2048 x 8-bit lags *or* 41-μs sampling, 4096 x 4-bit lags

Dynamic Spectrum: Ter5_030ct04_DM238.00.dat

hessels 4-Nov-2004 18:25

Dynamic Power Spectra

Dynamic Spectrum: Ter5_050505_DM239.00.dat

 $(P_{psr} = 3.65 \text{ ms}, P_{orb} = 4.1 \text{ hrs}, M_{c} > 18 M_{Jup})$

Spin Period Comparison with 47 Tuc

- 47 Tuc periods are much more uniform (2-7 ms), no pulsars with P_{spin} > 8 ms
- Ter5 pulsars have a flatter (and broader) distribution
- KS-test suggests distributions are different at ~90% confidence
- Does this tell us something about the dynamical state of Ter5's core?

1950 MHz Pulsar Luminosities

For a given pulsar luminosity, Ter5 has ~3x more pulsars than 47 Tuc!

New Timing Solutions

- All of the science comes from pulsar timing!
- Currently have timing solutions for 27 of the 32 pulsars
- Typical position errors: ~0.01" in RA ~0.2-0.3" in DEC
- Period derivatives show that ~half of the pulsars are behind the cluster
- Initial estimates show that core M/L > 2

DM Distribution

- DM range from ~234-244 pc/cm³
- Constrains the distance to Ter5 (argues for < 8kpc)
- Highest range of any cluster
- This implies a steep gradient in electrons (0.17 pc/cm³/arcsec) across only a couple arcminutes of sky
- But positions show that things are quite complicated...

DM Distribution

- DM range from ~234-244 pc/cm³
- Constrains the distance to Ter5 (argues for < 8kpc)
- Highest range of any cluster
- This implies a steep gradient in electrons (0.17 pc/cm³/arcsec) across only a couple arcminutes of sky
- But positions show that things are quite complicated...

Archival Chandra Observation

- Public 40ks
 Chandra ACIS-S
 observation
- 35+ sources within cluster half-mass radius (0.83')
- Absorption is high: N_H ~ 10²² cm⁻²

Archival Chandra Observation

- Public 40ks Chandra ACIS-S observation
- 35+ sources within cluster half-mass radius (0.83')
- Absorption is high: N_H ~ 10²² cm⁻²
- 2-3 possible MSP counterparts already

Thanks to Craig Heinke for the nice image!

Eclipsing Binary MSPs in Terzan 5

P_{orb} = 8.70 hrs M_{c,min} ~ 0.38 M_o

Six (!) Eccentric Binary MSPs in Ter5

Ter5I and J: Eccentric and Relativistic Systems

From measurement of the relativistic advance of periastron:

$$M_{tot} = 2.17 \pm 0.02 M_{\odot}$$

$$M_{tot} = 2.20 \pm 0.04 M_{\odot}$$

A Few Interesting Binary PSRs in Ter5

Obs

Ter5ad: The Original MSP Beater?

Ρ

spin

spin

Porb

Ter5ad: May 10th, 2005. Folded at 1.4ms.

Neutron Star Equations of State

From Lattimer and Prakash 2004, Science

New MSPs in rich clusters: NGC6440

NGC6441

NGC6624

Summary and Outlook

- Globular cluster pulsars provide unique probes into binary evolution, cluster dynamics, pulsar astrophysics, and even basic physics
- We are currently only seeing the tip of the iceberg (i.e. just the brightest pulsars in each cluster)
- New pulsars will continue to be discovered with each major improvement to our observing systems
- The greatest number of new discoveries will probably come from the bulge globulars, where the large DMs have prevented earlier systems from detecting MSPs
- Multi-wavelength follow-up will allow us to identify a handful of the strangest beasts

Observed Changes in Pulsar Periods

 Pulsar spin periods can be affected by more than magnetic spin-down

$$\frac{\dot{P}}{P}^{\text{meas}} = \frac{\dot{P}_o}{P_o} + \frac{\left(\mathbf{a}_{PSR} - \mathbf{a}_{Bary}\right) \cdot \mathbf{n}}{c} + \frac{V_{\perp}^2}{cD}$$

- Some pulsars seem to spin faster over time
 - Explained by their position behind the cluster

(Phinney 1992, 1993)

Eclipsing Binary MSPs

- Seem to be 2 families of eclipsing MSPs, separated by companion mass
- Systems with ~0.1M_o companions formed normally but have compact orbits
- Systems with lower mass companions (<0.05 M_o) formed via exchange and binary evolution (Rasio, Pfahl, and Rappaport, 2000; King, Davies, and Beer, 2003)

