Monte-Carlo Methods for Dense Stellar Systems

John M. Fregeau

Northwestern University

Aug 29, 2005

< □ > < ---->

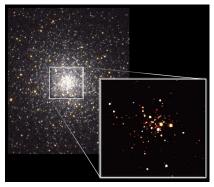
Northwestern University

John M. Fregeau

Old Stuff	New Stuff	The Future

Old Stuff

John M. Fregeau


Monte-Carlo Methods for Dense Stellar Systems

Northwestern University

A B > 4
 B > 4
 B

Physics of Dense Stellar Systems

Physics of Dense Stellar Systems

47 Tuc in optical and X-ray

- two-body relaxation
- stellar evolution
- stellar collisions
- binary interactions
- external effects
- central BH
- rotation
- violent relaxation
- large-angle scattering

Image: Image:

three-body binary formation

John M. Fregeau

Monte-Carlo Methods for Dense Stellar Systems

Northwestern University

Numerical Solution Methods

- N-Body: direct integration of the equations of motion
- Fokker-Planck: direct integration of the Fokker-Planck equation
- Monte-Carlo: particle-based method which uses Monte-Carlo to apply relaxation in the Fokker-Planck approximation
- Gas model: cluster modeled as conducting gas
- ► Hybrid methods: gas+MC, FP+*N*-body, etc.

John M. Fregeau

The Monte-Carlo Method

Assumptions Underlying Monte-Carlo Method

- diffusive two-body relaxation
- spherical symmetry
- dynamical equilibrium
- Fokker-Planck approximation

Northwestern University

Image: Image:

John M. Fregeau

- cannot realistically sum two-body scatterings over all stars
- instead, perform representative encounter with nearby star
- choose impact parameter so deflection angle is consistent with the effects of relaxation due to whole cluster

Image: Image:

The Major Monte-Carlo Codes

Northwestern University

The Major Monte-Carlo Codes

- MIT/NU: Hénon method with common timestep
- ► Freitag: Hénon method with individual timesteps
- Giersz: Hénon method with zones (based on Stodolkiewicz's code)
- Giersz & Spurzem: hybrid approach (anisotropic gas model for single stars, MC for binaries)

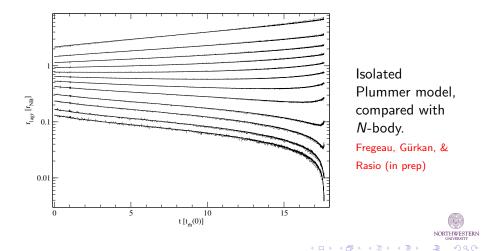
Old Stuff	New Stuff	
000000000		
The Major Monte-Carlo Codes		

Comparison Chart

Physics	NB	MC	MN	F	G	GS
two-body relaxation	X	x	x	х	х	х
stellar evolution	х	х	x	х	х	
stellar collisions	Х	х	x	х		
binary interactions	X	х	x		x	х
external effects	X	х	x	х	x	х
central BH	х	х		х		
rotation	х					
violent relaxation	X					
large-angle scattering	х	х				
three-body binaries	х	х			х	х
large $\mathit{N}_{ m star}$, $\mathit{N}_{ m bin}$		х	х	х	х	х

NB=N-body, MC=Monte-Carlo, MN=MIT/Northwestern, F=Freitag, G=Giersz, GS=Giersz & Spurzem

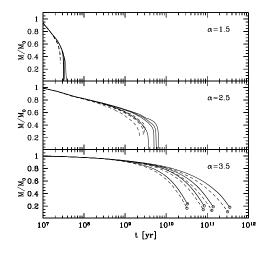
John M. Fregeau


Northwestern University

Old Stuff	
0000000000000	

Northwestern University

"Classic" Results

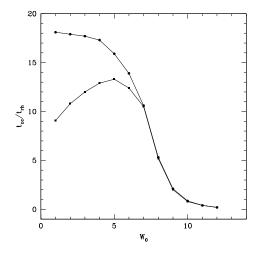

Core Collapse for Single-Component Model

John M. Fregeau

Old Stuff	New Stuff	
00000000000		
"Classic" Results		

Stellar Evolution

Single star evolution, compared with FP models. Joshi, Nave, & Rasio (2001)


Northwestern University

The Future

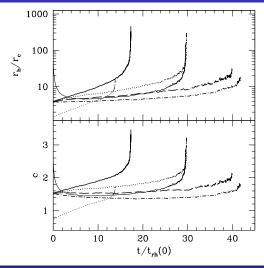
John M. Fregeau

Old Stuff ○○○○○○○●○○○	New Stuff 0000000	The Future
"Classic" Results		

Tidal Effects

Tidal boundary due to Galactic potential.

Joshi, Nave, & Rasio (2001)



Northwestern University

John M. Fregeau

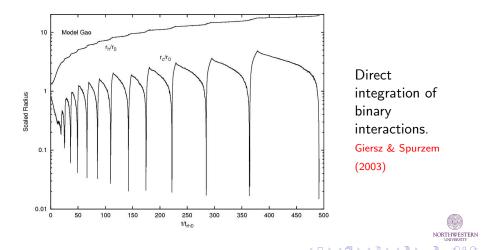
Old Stuff
0000000000000000000
"Classic" Results

Primordial Binary Interactions

Recipes for binary interactions, comparison with observations.

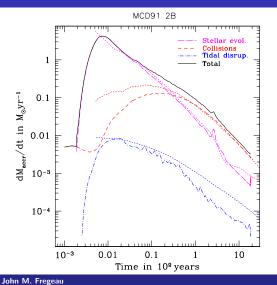
Fregeau, et al. (2003)

Northwestern University


John M. Fregeau

Old Stuff	New Stuff 0000000	Th
"Classic" Results		

ne Future


Northwestern University

Primordial Binary Interactions

Old Stuff	New Stuff	
0000000000		
"Classic" Results		

Central Black Hole

Mass accretion rate onto central BH in galactic nucleus, compared with FP models.

Freitag & Benz (2002)

Northwestern University

New Stuff

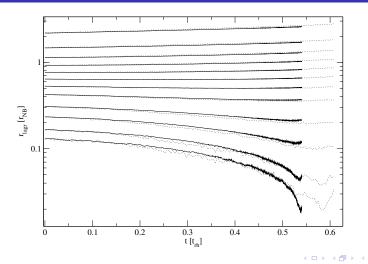
John M. Fregeau Monte-Carlo Methods for Dense Ste<u>llar Systems</u> Northwestern University

A B > 4
 B > 4
 B

Newly Added Physics

Newly Added Physics

- direct integration of binary interactions (GS, MN)
- physical collisions (F, MN)
- better treatment of wide mass spectra (F, MN)
- improved energy conservation (F, MN)


Northwestern University

Monte-Carlo Methods for Dense Stellar Systems

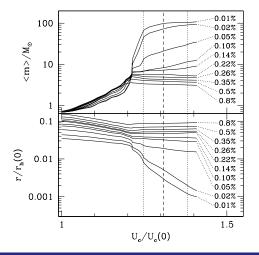
John M. Fregeau

New Results

Mass Spectrum: Kroupa from 0.1 to $10M_{\odot}$

Evolution of model with Kroupa IMF, compared with *N*-body. Fregeau, Gürkan, & Rasio (in prep)

John M. Fregeau


Monte-Carlo Methods for Dense Stellar Systems

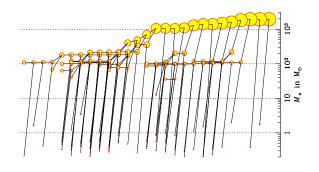
Northwestern University

Old Stuff

New Results

Mass Going Into Core Collapse

Robust results that $t_{\rm cc} \approx 0.15 t_{\rm rc}(0)$ for wide mass spectra, and $\approx 0.2\%$ of cluster mass goes into core collapse.


Gürkan, Freitag, & Rasio (2004)

Northwestern University

John M. Fregeau

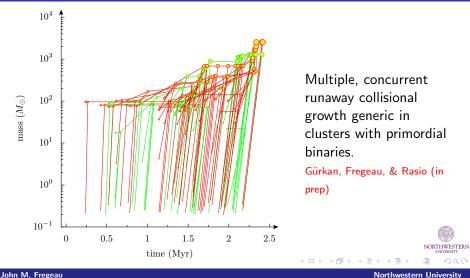
New Results

IMBHs: VMS Formation

Runaway collisional growth of a "very massive star" unavoidable for systems with $t_{\rm cc} \lesssim 3 \,{\rm Myr}$. Freitag, Gürkan, & Rasio (2005)

Image: Image:

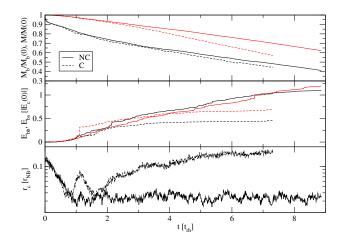
Northwestern University


UNIVERSIT

John M. Fregeau

Old Stuff	

New Results


IMBHs: VMS Formation with Primordial Binaries

John M. Fregeau

Old Stuff	New Stuff	
	0000000	
Name Danslar		

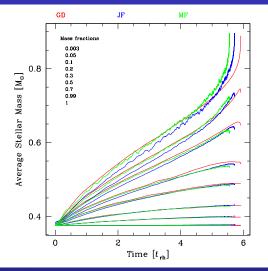
Cluster Evolution with Collisions and Binaries

Long-term cluster evolution with primordial binaries and stellar collisions. Fregeau, Gürkan, & Rasio (in prep)

NORTHWESTERN

Northwestern University

The Future


John M. Fregeau

Old Stuff

New Stuff

Comparison of "Approximate" Techniques

Comparison of "Approximate" Techniques

Comparison of active FP and Monte-Carlo codes with *N*-body (during this very meeting!).

John M. Fregeau

Monte-Carlo Methods for Dense Stellar Systems

Northwestern University

UNIVERSITY

Old Stuff	New Stuff	The Future

The Future

- binary stellar evolution (catching up with N-body...)
- ► 3-D?
- block timesteps?
- completely new techniques?

John M. Fregeau