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Abstract. Radio pulsar observations can be used to test aspects of general
relativity from equivalence principle violations to binary orbital effects in the
strong-field regime. This article summarizes the status of such tests at the start
of the meeting, and describes two new tests made possible by recent observations
of well-known binary pulsar systems.

1. Introduction

The potential of pulsars for high-precision tests of the predictions of general rel-
ativity (GR) was recognized immediately upon the discovery of the first pulsar
binary system, PSR B1913+16 (Hulse & Taylor 1975, Wagoner 1975, Eardley
1975, Damour & Ruffini 1974, Barker & O’Connell 1975a,b). Since then, pulsars
have provided stringent tests of equivalence principle violations and both radia-
tive and quasi-static strong-field effects. This article presents an overview of
these tests (see also Stairs 2003 for a fuller description of much of this material)
and a snapshot of the results as of the start of this meeting. Further details on
and updates of some of the tests discussed below can be found in other articles
(Lorimer & Freire; Bailes; Weisberg & Taylor) in this volume, and the double-
pulsar system is the subject of numerous other articles and will not be discussed
in detail here.

2. Equivalence Principle Violations

Equivalence principles describe our expectations of experimental outcomes in
different reference frames. The Weak Equivalence Principle (WEP), formulated
by Newton, states that in an external gravitational field, objects of different
compositions and masses will experience the same acceleration. The Einstein
Equivalence Principle (EEP) extends this idea to include Lorentz invariance
(non-existence of preferred reference frames) and positional invariance (non-
existence of preferred locations) for non-gravitational experiments, predicting
that these experiments will have the same outcomes in inertial and in freely-
falling reference frames. The Strong Equivalence Principle (SEP) adds Lorentz
and positional invariance for gravitational experiments, thus including experi-
ments on objects with strong self-gravitation. GR incorporates the SEP, but
alternate theories of gravity may violate all or parts of it.
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The parametrized post-Newtonian (PPN) formalism (Will & Nordvedt 1972)
provides a uniform description of the weak-gravitational-field limit and facili-
tates comparisons of different gravitational theories theories in this limit. This
formalism has 10 parameters (γPPN, β, ξ,α1, α2, α3, ζ1, ζ2, ζ3 and ζ4); see Will
(2001) for full descriptions and physical meanings of these parameters. Damour
and Esposito-Farèse (1992b, 1996a) extended this formalism to include strong-
field effects for generalized tensor-multiscalar gravitational theories. This allows
a better understanding of limits in the strong-field regime imposed by systems
including pulsars and white dwarfs, for which the amounts of self-gravitation are
very different. Here, for instance, α1 becomes α̂1 = α1+α′1(c1+ c2) + ..., where
ci describes the “compactness” of mass mi . The compactness can be written
ci = −2∂ lnmi/∂ lnG ' −2(Egrav/(mc2))i, where G is Newton’s constant and
Egrav
i is the gravitational self-energy of mass mi. The compactness is about
−0.2 for a neutron star (NS) and −10−4 for a white dwarf (WD). Pulsar timing
sets limits on α̂1, which tests for the existence of preferred-frame effects (viola-
tions of Lorentz invariance) and α̂3, which, in addition to testing for preferred-
frame effects, also implies non-conservation of momentum if non-zero. (A test

of ζ̂2, which is also a non-conservative parameter, relies on the second period
derivative of the double-neutron-star binary PSR B1913+16 (Will 1992). As a
measurement of this quantity could also be due to timing noise or to geodetic
precession (Konacki, Wolszczan & Stairs 2003) this test will not be considered
further.) Pulsars can also be used to set limits on other SEP-violation effects
which constrain combinations of the PPN parameters: the Nordtvedt (“gravita-
tional Stark”) effect, dipolar gravitational radiation, and variation of Newton’s
constant.

2.1. Strong Equivalence Principle

Nordvedt (1968) first suggested direct tests of the SEP through Lunar Laser
Ranging (LLR) experiments. As the masses of Earth and the Moon contain
different fractional contributions from self-gravitation, a violation of the SEP
would cause them to fall differently in the Sun’s gravitational field and “polarize”
the orbit in the direction of the Sun. LLR tests have set a limit of |η| < 0.001
(e.g., Dickey et al. 1994; Will 2001), where η is a combination of PPN parameters:

η = 4β − γ − 3− 10
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The strong-field formalism uses the parameter ∆i (Damour & Schäfer 1991),
which allows for non-linear dependence on the compactness and which for object
“i” may be written as:
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Pulsar–white dwarf systems constrain the difference ∆net = ∆pulsar−∆companion

(Damour & Schäfer 1991). If the SEP is violated, the equations of motion for
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such a system will contain an extra acceleration ∆netg, where g is the gravita-
tional acceleration due to the Galaxy. This term will influence the evolution of
the orbit of the system. For low-eccentricity orbits, the largest effect will be to
force the eccentricity toward alignment with the projection of g onto the orbital
plane of the system. Therefore the time evolution of the eccentricity vector will
not only depend on the usual GR-predicted relativistic advance of periastron
(ω̇) but will also include a constant term. Damour and Schäfer (1991) write the
time-dependent eccentricity vector as:

e(t) = eF + eR(t), (3)

where eR(t) is the ω̇-induced rotating eccentricity vector, and eF is the forced
component. In terms of ∆net, the magnitude of eF is (Damour & Schäfer 1991;
Wex 1997):

|eF | =
3

2

∆netg⊥
ω̇a(2π/Pb)

, (4)

where g⊥ is the projection of the gravitational field onto the orbital plane, and
a = x/(sin i) is the semi-major axis of the orbit. For small-eccentricity systems,
this becomes:

|eF | =
1

2

∆netg⊥c
2

FGM(2π/Pb)2
, (5)

where M is the total mass of the system, and, in GR, F = 1 and G is Newton’s
constant.

The primary criterion for selecting pulsars to test the SEP is for the orbital
system to have a large value of P 2

b/e, greater than or equal to 107 days2 (Wex
1997). However, as pointed out by Damour and Schäfer (1991) and Wex (1997)
(see also Lorimer & Freire, in this volume), two age-related restrictions are also
needed. First, the pulsar must be sufficiently old that the ω̇-induced rotation of
e has completed many turns and eR(t) can be assumed to be randomly oriented.
This requires that the characteristic age τc À 2π/ω̇. Secondly, ω̇ itself must be
larger than the rate of Galactic rotation, so that the projection of g onto the
orbit can be assumed to be constant. According to Wex (1997), this holds true
for pulsars with orbital periods of less than about 1000 days.

Obtaining a limit on ∆net requires statistical averages over the unknowns in the
problem. To account for the random orientation of eR, Wex (1997, 2000) uses
the inequality:

|eF | ≤ eξ1(θ), ξ1(θ) =




1/ sin θ : θ ∈ [0, π/2)
1 : θ ∈ [π/2, 3π/2]

−1/ sin θ : θ ∈ (3π/2, 2π)
, (6)

where e = |e|, and θ (the angle between −g⊥ and eR; see Figure 1 and Damour
& Schäfer 1991) is assumed to have a uniform probability distribution between
0 and 2π.

The projection of g onto the orbital plane can be written:

|g⊥| = |g|[1− (cos i cosλ+ sin i sinλ sin(φ− Ω))2]1/2, (7)
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Figure 1. “Polarization” of a nearly circular binary orbit under the influence
of a forcing vector g, showing the relation between the forced eccentricity, eF ,
the eccentricity evolving under the general-relativistic advance of periastron,
eR(t), and the angle θ. After Wex (1997).

where i in the inclination angle of the orbital plane relative to the line of sight,
φ is the position angle of the projection of the gravitational acceleration vector
g onto the plane of the sky, Ω is the position angle of the line of nodes and λ
is the angle between the line from pulsar to Earth and g (Damour & Schäfer
1991). The values of λ and |g| can be determined from geometry and models
of the Galactic potential (e.g., Kuijken & Gilmore 1989), respectively. The
inclination angle i can be estimated if even crude estimates of the neutron star
and companion masses are available, from statistics of NS masses (e.g., Thorsett
& Chakrabarty 1999) and/or the core-mass–orbital-period relation between the
size of the orbit and the WD companion mass (e.g., Rappaport et al. 1995).
However, the angle Ω is also usually unknown and must also be assumed to be
uniformly distributed between 0 and 2π.

Damour and Schäfer (1991) use the PSR B1953+29 system (which had the
largest value of P 2

b/e known at the time) and integrate over the angles θ and Ω to
determine a 90% confidence upper limit of ∆net < 1.1× 10−2. Wex (1997) takes
an ensemble of pulsars, calculating for each system the probability (fractional
area in θ–Ω space) that ∆net is less than a given value, and then deriving an
overall probability for each value of ∆net. In this way he derives ∆net < 5 ×
10−3 at 95% confidence. An updated version of this calculation is presented by
Lorimer & Freire (in this volume). In an attempt to account for possible selection
effects, Wex (2000) tackles the problem from the other direction. Given a value
of ∆net, an upper limit on |θ| is obtained from equation 6. A Monte Carlo
simulation of the expected pulsar population (assuming a range of masses based
on evolutionary models and a random orientation of Ω) then yields a certain
fraction of the population that agree with this limit on |θ|. The collection of
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pulsars ultimately gives a limit of ∆net < 9×10−3 at 95% confidence, a somewhat
weaker limit.

A qualitative improvement to the test can be made using PSR J1713+0737,
using the fact that the full orientation of its orbit (i.e., the parameters i and Ω),
as well as the two stellar masses and the parallax, are now known to within small
uncertainties from high-precision pulse timing (Splaver et al. 2005). This means
fewer statistical averages are needed for this system. Through a Monte-Carlo
simulation in which the (covariant) uncertainty ranges are thoroughly sampled
and θ is still assumed to be randomly distributed, a limit of |∆net| < 0.013
(95% confidence) is derived. While not as stringent as the limit derived from an
ensemble of pulsars, it is nonetheless important as it is a unique type of limit.

2.2. α̂1 and α̂3

A non-zero α̂1 (the strong-field analog of α1) implies that the velocity w of a
pulsar system (relative to a “universal” background reference frame given by
the Cosmic Microwave Background, or CMB) will affect its orbital evolution,
forcing the eccentricity to align with the projection of the system velocity onto
the orbital plane.

The analysis proceeds in a similar fashion to that for ∆net, except that the
magnitude of eF is now written as (Damour & Esposito-Farèse 1992a; Bell,
Camilo, & Damour 1996):

|eF | =
1

12
α̂1

∣∣∣∣
m1 −m2

m1 +m2

∣∣∣∣
|w⊥|

[G(m1 +m2)(2π/Pb)]
1/3

, (8)

where w⊥ is the projection of the system velocity onto the orbital plane. The
angle λ, used in determining this projection in a manner similar to that of
equation 7, is now the angle between the line of sight to the pulsar and the
absolute velocity of the binary system, and φ is now the angle of the projection
of the absolute velocity vector onto the plane of the sky.

The figure of merit for systems used to test α̂1 is P
1/3
b /e. The same age

requirements apply as for the ∆net test. Examples of suitable systems are
PSR J2317+1439 (Camilo, Nice, & Taylor 1993; Bell, Camilo, & Damour 1996)
with a last published value of e < 1.2× 10−6 in 1996 (Camilo et al. 1996), and
PSR J1012+5307, with e < 8 × 10−7 (Lange et al. 2001). This latter system
is especially valuable because observations of its white-dwarf component yield a
radial velocity measurement (Callanan, Garnavich, & Koester 1998) eliminating
the need to take into account a range of possible values for the radial velocity.
The analysis of Wex (2000) yields a limit of α̂1 < 1.4×10−4. This is comparable
in magnitude to the weak-field results from lunar laser ranging, but incorporates
strong field effects as well.

Tests of α̂3 can be derived from both binary and single pulsars. A non-zero α̂3,
which implies both a violation of local Lorentz invariance and non-conservation
of momentum, will cause a rotating body to experience a self-acceleration aself
in a direction orthogonal to both its spin ΩSp and its absolute velocity w



8 Stairs

(Nordtvedt & Will 1972):

aself = −
1

3
α̂3

Egrav

(mc2)
w ×ΩSp. (9)

Thus the self-acceleration depends strongly on the compactness of the object.

An ensemble of isolated pulsars can be used to set a limit on α̂3 as follows. For
any given pulsar, it is likely that some fraction of the self-acceleration will be
directed along the line of sight to the Earth. Such an acceleration will contribute
to the observed period derivative Ṗ via the Doppler effect, by an amount:

Ṗα̂3
=
P

c
n̂ · aself , (10)

where n̂ is a unit vector in the direction to the pulsar from the Earth. Will
(1993) assumes random orientations of both the pulsar spin axes and velocities,

and finds that, on average, |Ṗα̂3
| ' 5×10−5|α̂3|, independent of the pulse period.

The sign of the α̂3 contribution to Ṗ , however, may be positive or negative for
any individual pulsar, thus if there were a large contribution on average, one
would expect to observe pulsars with both positive and negative total period
derivatives. Young pulsars in the field of the Galaxy all show positive period
derivatives, typically around 10−14s/s. Thus the maximum possible contribution
from α̂3 must also be considered to be of this size, and the limit is given by
|α̂3| < 2× 10−10 (Will 1993). Bell (1996) applies this test to a set of millisecond
pulsars, which have much smaller period derivatives, on the order of 10−20s/s.
Here it is also necessary to account for the “Shklovskii effect” (Shklovskii 1970) in
which a similar (always positive) Doppler-shift addition to the period derivative
results from the transverse motion of the pulsar on the sky. Once this correction
is applied to the observed period derivatives for isolated millisecond pulsars, a
limit on |α̂3| on the order of 10−15 results (Bell 1996; Bell & Damour 1996).

In the case of a binary pulsar–white-dwarf system, both bodies experience a
self-acceleration. The most important effect is a coupling of the spins to the
absolute motion of the centre of mass. Both the compactness and the spin of
the pulsar will completely dominate those of the white dwarf, making the net
acceleration of the two bodies effectively (Bell & Damour 1996):

aself =
1

6
α̂3cpw ×ΩSp, (11)

where cp and ΩSp denote the compactness and spin angular frequency of the pul-
sar, respectively, and w is the velocity of the system. On evolutionary grounds
(e.g., Bhattacharya & van den Heuvel 1991), the spin axis of the pulsar may be
assumed to be aligned with the orbital angular momentum of the system, hence
the net effect of the acceleration will be, once again, to induce a polarization
of the eccentricity vector within the orbital plane. The forced eccentricity term
may be written as:

|eF | = α̂3
cp|w|
24π

P 2
b

P

c2

G(m1 +m2)
sinβ (12)
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where β is the (unknown) angle between w and ΩSp, and P is, as usual, the
spin period of the pulsar: P = 2π/ΩSp.

The figure of merit for systems used to test α̂3 is P 2
b/(eP ). The additional

requirements of τc À 2π/ω̇ and ω̇ being larger than the rate of Galactic rotation
also hold. The 95% confidence limit derived by Wex (2000) for an ensemble of
binary pulsars is |α̂3| < 1.5 × 10−19, much more stringent than for the single-
pulsar case.

Again, PSR J1713+0747 allows a new type of limit due to the measurement
of the orientation of its orbit (Splaver et al. 2005). Sampling the full range of
allowed angular, mass and distance parameters, and finding the “worst case”
radial velocity for each trial system, a limit of |α̂3| < 1.2× 10−19 is found, even
stronger than that derived from the ensemble of pulsars, and less statistical in
nature.

3. Dipolar Gravitational Radiation

General Relativity predicts gravitational radiation from the time-varying mass
quadrupole of a binary pulsar system, but does not predict dipolar gravitational
radiation, though many theories that violate the SEP do. In these theories,
dipolar gravitational radiation results from the difference in gravitational bind-
ing energy of the two components of a binary. For this reason, neutron star–white
dwarf binaries are the ideal laboratories to test the strength of such dipolar emis-
sion. The expected rate of change of the period of a circular orbit due to dipolar
emission can be written as (Will 1993; Damour & Esposito-Farèse 1996b):

ṖbDipole = −
4π2G∗
c3 Pb

m1m2

m1 +m2
(αc1 − αc2)2, (13)

where G∗ = G in GR, and αci is the coupling strength of body “i” to a scalar
gravitational field (Damour & Esposito-Farèse 1996b). The best test systems
here are of course pulsar–white dwarf binaries with short orbital periods, such as
PSRs B0655+64 and J1012+5307 (both with circular orbits) and the eccentric
PSR J1141−6545. In these cases, αc1 À αc2 so that a strong limit can be set
on the coupling of the pulsar itself. The most recent limit for PSR B0655+64
comes from Arzoumanian (2003), who sets a 2-σ upper limit of |Ṗb/Pb| < 1 ×
10−10 yr−1, or |Ṗb| < 2.7× 10−13, which yields (αc1 − α0)2 < 2.7× 10−4, where
α0 is a reference value of the coupling at infinity. For PSR J1012+5307, a
Shklovskii correction (Shklovskii 1970) for the transverse motion of the system
and a correction for the (small) predicted amount of quadrupolar radiation must

first be subtracted from the observed upper limit to arrive at Ṗb = (−0.6±1.1)×
10−13 and (αc1−α0)2 < 4×10−4 at 95% confidence (Lange et al. 2001). It should
be noted that both these limits depend on estimates of the masses of the two
stars and do not address the (unknown) equation of state of the neutron stars.

The young-pulsar–white-dwarf system PSR J1141−6545 (Kaspi et al. 2000) is
eccentric and therefore expected to emit large amounts of quadrupolar grav-
itational radiation. The resulting orbital period derivative has recently been
measured (Bailes et al. 2003; see also Bailes, in this volume) and found to be in
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good agreement with the predictions of GR, thus this system can also be used to
exclude dipolar radiation (Gerard & Wiaux 2002) and to set even stronger limits
on tensor-scalar theories than the circular-orbit systems (Esposito-Farèse 2003).
It currently sets a limit of (αc1 − α0)2 < 1.3 × 10−4, and this should improve

dramatically as the measurement on Ṗb improves (Esposito-Farèse 2003).

Limits may also be derived from double-neutron-star systems (e.g., Will 1977;
Will & Zaglauer 1989), although here the difference in the coupling constants is
small and so the expected amount of dipolar radiation is also small compared
to the quadrupole emission. However, certain alternative gravitational theories
in which the quadrupolar radiation predicts a positive orbital period derivative
independently of the strength of the dipolar term (e.g., Rosen 1973; Ni 1973;
Lightman & Lee 1973) are ruled out by the observed decreasing orbital period
in these systems (Weisberg & Taylor 1981).

4. Variation of Newton’s Constant

Theories that violate the SEP by allowing for preferred space-time locations may
permit Newton’s constant, G, to vary. In general, variations in G are expected
to occur on the timescale of the age of the Universe, such that Ġ/G ∼ H0 ∼
0.7×10−10 yr−1, whereH0 is the Hubble constant. Three different pulsar-derived
tests can be applied to these predictions, as a SEP-violating time-variable G
would be expected to alter the properties of neutron stars and white dwarfs,
and to affect binary orbits.

By changing the gravitational binding energy of neutron stars, a non-zero Ġ
would reasonably be expected to alter the moment of inertia of the star and so
change its spin on the same timescale (Counselman & Shapiro 1968). Goldman
(1990) writes: (

Ṗ

P

)

Ġ

=

(
∂ ln I

∂ lnG

)

N

Ġ

G
, (14)

where I is the moment of inertia of the neutron star, about 1045 g cm2, and
N is the (conserved) total number of baryons in the star. By assuming that

this represents the only contribution to the observed Ṗ of PSR B0655+64, in
a manner similar to the isolated-pulsar test of α̂3 described above, Goldman
then derives an upper limit of |Ġ/G| ≤ (2.2 − 5.5) × 10−11 yr−1, depending on
the stiffness of the neutron star equation of state. Arzoumanian (1995) applies
similar reasoning to PSR J2019+2425 (Nice, Taylor, & Fruchter 1993) which has
a characteristic age of 27 Gyr once the “Shklovskii” correction is applied (Nice &
Taylor 1995). Again depending on the equation of state, the upper limits from

this pulsar are |Ġ/G| ≤ (1.4 − 3.2) × 10−11 yr−1 (Arzoumanian 1995). These
values are similar to those obtained by solar-system experiments such as radar
ranging to the Viking Lander on Mars (e.g., Reasenberg 1983). Several other
millisecond pulsars, once “Shklovskii” and Galactic-acceleration corrections are
taken into account, have similarly large characteristic ages (e.g. Camilo et al.
1996, Toscano et al. 1996). The quality of this test, of course, depends on the
reliability of the characteristic age as a measure of the true pulsar age.
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In a binary system, a varying G will affect the individual stars and the total
mass and angular momentum of the binary system, causing an orbital period
derivative that may be written as (Damour, Gibbons, & Taylor 1988; Nordtvedt
1990):

(
Ṗb
Pb

)

Ġ

= −
[
2−

(
m1c1 +m2c2
m1 +m2

)
− 3

2

(
m1c2 +m2c1
m1 +m2

)]
Ġ

G
. (15)

The best limit comes from the neutron-star–white dwarf system PSR B1855+09,
with a measured limit on Ṗb of (0.6±1.2)×10−12 (Kaspi, Taylor, & Ryba 1994;

Arzoumanian 1995); this leads to a bound of Ġ/G = (−1.3± 2.7)× 10−11 yr−1.

Prospects for improvement come directly from improvements to the limit on Ṗb.
Even though PSR J1012+5307 has a tighter limit on Ṗb (Lange et al. 2001), its

shorter orbital period means that the Ġ limit it sets is a factor of 2 weaker than
for PSR B1855+09. Recent timing of PSR J1713+0747 (Splaver et al. 2005)
should allow a tighter limit.

The Chandrasekhar mass, MCH, is the maximum mass possible for a white
dwarf supported against gravitational collapse by electron degeneracy pressure
(Chandrasekhar 1931). Its value — about 1.4M¯ — depends on Newton’s

constant: MCH ∼ (h̄ c/G)3/2/m2
N, where h̄ is Planck’s constant and mN is the

neutron mass. The majority of measured and constrained pulsar masses are
consistent with a narrow distribution centred very close toMCH: 1.35±0.04M¯

(Thorsett & Chakrabarty 1999,but see the article by Nice et al., in this volume).
Thus it is reasonable to assume thatMCH sets the typical neutron star mass, and
to check for any changes in the average neutron star mass over the lifetime of the
Universe. Thorsett (1996) compiles a list of measured and average masses from
5 double-neutron-star binaries with ages ranging from 0.1 Gyr to 12 or 13 Gyr in
the case of the globular-cluster binary B2127+11C. Using a Bayesian analysis,
he finds a limit of Ġ/G = (−0.6± 4.2)× 10−12 yr−1 at the 95% confidence level.

5. Strong-Field Gravity

The best-known uses of pulsars for testing the predictions of gravitational the-
ories are those in which the predicted strong-field effects are compared directly
against observations. As essentially point-like objects in strong gravitational
fields, neutron stars in binary systems provide extraordinarily clean tests of
these predictions.

In any given theory of gravity, the post-Keplerian (PK) parameters (advance of

periastrion ω̇, orbital period derivative Ṗb, time dilation/gravitational redshift
γ and range r and shape s of Shapiro delay) can be written as functions of
the pulsar and companion star masses and the Keplerian parameters if spin-
orbit contributions can be neglected. As the two stellar masses are the only
unknowns in the description of the orbit, it follows that measurement of any two
PK parameters will yield the two masses, and that measurement of three or more
PK parameters will over-determine the problem and allow for self-consistency
checks. It is this test for internal consistency among the PK parameters that
forms the basis of the classic tests of strong-field gravity. It should be noted that
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the basic Keplerian orbital parameters are well-measured and can effectively be
treated as having negligible uncertainties.

In general relativity, the equations describing the PK parameters in terms of
the stellar masses are (see Damour & Deruelle 1986; Taylor & Weisberg 1989;
Damour & Taylor 1992):

ω̇ = 3

(
Pb
2π

)−5/3
(T¯M)2/3 (1− e2)−1 , (16)

γ = e

(
Pb
2π

)1/3
T
2/3
¯ M−4/3m2 (m1 + 2m2) , (17)

Ṗb = −
192π

5

(
Pb
2π

)−5/3 (
1 +

73

24
e2 +

37

96
e4
)
(1− e2)−7/2 T 5/3

¯ m1m2M
−1/3 ,

(18)
r = T¯m2 , (19)

s = x

(
Pb
2π

)−2/3
T
−1/3
¯ M2/3m−12 . (20)

where s ≡ sin i, M = m1 + m2 and T¯ ≡ GM¯/c
3 = 4.925490947µs. Other

theories of gravity, such as those with one or more scalar parameters in addition
to a tensor component, will have somewhat different mass dependencies for these
parameters.

A traditional method of comparing the observed results to the predictions of GR
is through use of a “mass-mass” diagram such as that for PSR B1534+12 shown
in Figure 2. This presents the 68% confidence regions for parameters measured
using the theory-independent “DD” formalism, which makes no assumptions
about the validity of any gravitational theory. If these curves intersect in a
common region which includes the mass predictions based on GR, then the
parameters may be said to agree with GR.

Weisberg & Taylor (in this volume) describe the excellent agreement of the
observed parameters of PSR B1913+16 with GR. The slightly less eccentric
system PSR B1534+12 allows detection of Shapiro delay in addition to the ω̇,
Ṗb and γ parameters measured for B1913+16, permitting an ω̇–γ–s combination
which tests only the quasi-static regime of GR, an important complement to the
“mixed” B1913+16 test (Stairs et al. 2002). The offset of Ṗb for B1534+12 from
its expected GR value can be attributed to a poorly known necessary kinematic
correction due to the relative acceleration of the pulsar-system center-of-mass
and Solar System Barycentre reference frames. The crucial unknown quantity
is the distance to the pulsar. Under the assumption that GR is correct, the
distance can be derived to be 1.04 ± 0.04 kpc (Stairs et al. unpublished), now
among the most precisely measured pulsar distances.

New and unique constraints (notably that of the mass ratio) are of course avail-
able for the double-pulsar system (Lyne et al. 2004; articles by Kramer and

others in this volume). Agreement with GR is also seen for ω̇, Ṗb and γ
(and the scintillation measurement of sin i) in the pulsar–white-dwarf system
PSR J1141−6545 (Bailes et al. 2003; Bailes, in the volume). The circular-orbit
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Figure 2. Mass-mass diagram for the PSR B1534+12 system. Labeled
curves illustrate 68% confidence ranges of the DD parameters (Stairs et
al. unpublished). The filled circle indicates the component masses accord-
ing to the DDGR solution. The kinematic correction for assumed distance
d = 0.7 ± 0.2 kpc (Taylor & Cordes 1993) has been subtracted from the ob-

served value of Ṗb; the uncertainty on this kinematic correction dominates the
uncertainty of this curve. A slightly larger distance removes the small appar-
ent discrepancy between the observed and predicted values of this parameter.

PSR–WD system J0437−4715 has a fully known orientation due to geometrical
effects and the motions of the pulsar and the Earth (van Straten et al. 2001;
Kopeikin 1995, 1996). The magnitude and shape of the Shapiro delay signal can
be predicted based on the geometrically derived system inclination and compared
to the predictions of GR; this results in an excellent match (van Straten et al.
2001). The same argument could be made for the wider-orbit PSR J1713+0747
for which the same angles have recently been measured (Splaver et al. 2005).

6. Geodetic Precession

The evolutionary scenarios for double-NS systems (e.g., Dewi & Pols 2003; Bethe
& Brown 1998) predict that, immediately before the second supernova explosion,
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the two stellar spin axes whould be aligned with the orbital angular momentum
of the system. After the explosion, the recycled pulsar’s spin axis direction
should be unchanged, but the orbital angular momentum vector and most likely
the spin axis of the companion will have changed direction. The resulting mis-
alignment between the pulsar’s spin axis and the orbital angular momentum
vector will cause the former to precess around the latter. The evolution of
the pulsar spin axis S1 can be written as (Damour & Ruffini 1974; Barker &
O’Connell 1975b):

dS1
dt

= Ωspin
1 × S1, (21)

where the vector Ωspin
1 is aligned with the orbital angular momentum. Its mag-

nitude is given by:

Ωspin
1 =

1

2

(
Pb
2π

)−5/3 m2(4m1 + 3m2)

(1− e2)(m1 +m2)4/3
T
2/3
¯ , (22)

where again T¯ ≡ GM¯/c
3 = 4.925490947µs. The predicted precession periods

are roughly 700 years for PSR B1534+12, 300 years for PSR B1913+16, 270
years for PSR J1141−6545 and only 70–75 years for PSRs J0737−3039A and B.
The primary manifestation of this precession is a slow change in the shape of
the pulse profile, as different regions of the pulse emission beam move into the
observable slice.

Weisberg & Taylor (in this volume) describe the profile shape changes and beam
modeling of PSR B1913+16. While a range of possible beam models (Kramer
1998; Weisberg & Taylor 2002) point to a spin-orbit misalignment angle of about
20◦ and disappearance of the pulsar in about 20 years’ time, there is significant
uncertainty in the beam model itself, with both hourglass (Weisberg & Taylor
2002) and circular (Kramer 2002) models possible. This ambiguity has effectively
prevented the observations from leading to a measurement of the precession rate
independent of a beam model.

The situation is different for PSR B1534+12, which has stronger signal-to-noise
in general and which has a polarization position angle swing that follows the
rotating vector model (Radhakrishnan & Cooke 1969). In fact, for this pulsar,
long-term changes are apparent in both the profile shape and the polarization
properties. The polarization changes show that the impact parameter of the
line of sight to the pulsar’s magnetic pole is increasing in magnitude at a rate
of about 0.2◦/yr (Fig. 3). Under the assumption that this is due to geodetic
precession of the spin axis, these changes provide an immediate insight into the
3-dimensional orientation of the pulsar’s spin axis. Furthermore, the long-term
evolution of the pulse profile shape can be modeled linearly and compared in
magnitude to smaller but similar variations due to special-relativistic aberra-
tion on orbital timescales. Thus the unknown intrinsic pulse beam shape can be
“calibrated out” and the precession rate measured (Stairs, Thorsett, & Arzouma-
nian 2004). While the rate measurement is still low-precision, it is in excellent
agreement with the predictions of GR. Figures 3 and 4 show the profile and
polarization changes, along with the aberration/precession measurement. Be-
sides providing the first beam-model-independent test of the precession rate in
strong-field gravity, these observations also yield the full 3-dimensional system
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Figure 3. Top panel: the position angle of linear polarization in 2001 June,
with best fit rotating vector model (RVM) overlaid. Only the position angle
points indicated by large dots were used in the RVM fit; these were weighted
by their uncertainties, with a small uncertainty added in quadrature to ac-
count for deviations from the RVM. Middle panel: total intensity (solid) and
linear polarization (dashed) profiles in 2001 June. This profile is very similar
in shape to our “reference” profile P0. Inset: evolution of impact angle β
with time. Bottom panel: “Difference” profile P1, representing essentially the
time-derivative of the observed profile. From Stairs, Thorsett & Arzoumanian
(2004).

geometry for B1534+12, up to one ambiguity in the pair of angles representing
the spin-orbit misalignment and the inclination angle of the system. The am-
biguity can be resolved, and in fact the kick in the second supernova explosion
can be tightly constrained, by tracing the pulsar’s motion backwards in time
through the Galaxy to plausible birth sites, allowing for a range of values in the
unknown radial velocity. By combining the precession-derived geometry with
the orbital orientation known from scintillation (Bogdanov et al. 2002), it can
be shown that the immediate progenitor of the second neutron star was likely
overflowing its Roche lobe, and that it received a kick of 230±60 km/s (Thorsett,
Dewey, & Stairs 2005; cf. Willems, Kalogera, & Henninger 2004).
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Figure 4. The ratio of the strengths of P1 and P0 for each observation is
shown as a function of date in the main panel and aberration phase (essentially
the true anomaly corrected for the advance of periastron) in the inset. The
best-fit model is shown by the solid line in each panel, and in the orbital-phase
plot, the GR prediction based on the RVM model is indicated by the dotted
line. From Stairs, Thorsett & Arzoumanian (2004).

7. Conclusions

The next several years will be very exciting times for pulsars tests of GR, with
new pulsars being discovered for equivalence-principle violation limits, potential
for improving the precession rate test in PSR B1534+12 using wider-bandwidth
observations, and the prospect of qualitatively new as well as unprecedentedly
precise tests resulting from the double-pulsar system.
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