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Abstract. Following a brief review of the principles of the strong equivalence
principle (SEP) and tests for its violation in the strong and weak gravitational
field regimes, we present preliminary results of new tests using two long-period
binary pulsars: J0407+1607 and J2016+1947. PSR J0407+1607 is in a 669-
day orbit around a >

∼ 0.2M¯ companion, while J2016+1947 is in a 635-day
orbit around a >

∼ 0.3M¯ companion. The small eccentricities of both orbits
(e ∼ 10−3) mean that these systems reduce previous limits on SEP violation by
more than a factor of 4.

1. Equivalence Principles and Gravitational Self-energy

The principle of equivalence between gravitational force and acceleration is a
common feature to all viable theories of gravity. The Strong Equivalence Princi-
ple (SEP), however, is unique to Einstein’s general theory of relativity (GR). Un-
like the weak equivalence principle (which dates back to Galileo’s demonstration
that all matter free falls in the same way) and the Einstein equivalence principle
from special relativity (which states that the result of a non-gravitational exper-
iment is independent of rest-frame velocity and location), the SEP states that
free fall of a body is completely independent of its gravitational self energy. Be-
fore examining how the SEP can be tested, let us first review the gravitational
self energy, ε, which is a useful quantity for distinguishing between strong or
weak gravitational fields. Expressed in terms of the rest-mass energy of a body
of mass M and size R, ε = −GM/Rc2. For most bodies, ε is vanishingly small.
For example εhuman ∼ −10−26, εEarth ∼ −5 × 10−10 and even ε¯ = −2 × 10−6.
Only for compact objects does ε become significant and we enter the “strong-
field” regime. For a white dwarf εWD ∼ −10−4, for a neutron star εNS ∼ −0.3
and for a non-rotating black hole, εBH = −0.5.
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Figure 1. Diagram from Wex (1997) showing two competing effects on the
orientation of a binary system’s eccentricity: the component in the direction
of the local gravitational field due to an SEP violation (e∆) and the rotation
due to relativistic periastron advance (eR).

2. Testing the Strong Equivalence Principle

If the SEP is violated, then the ratio of inertial mass (mi) to gravitational mass
(mg) of a test particle differs from unity by an amount

mi

mg
− 1 ≡ ∆ = ηε+ η′ε2 + · · · , (1)

where η parametrises the violation in terms of ε. A violation of the SEP (∆ 6=
0) would mean that two bodies of unequal self-energies fall differently in an
external gravitational field. If these bodies were in orbit about one another, their
differential free fall would cause the orbit to be “polarized” in the direction of
the external field. This so-called “Nordvedt effect” was first proposed as a test
of the SEP for the Earth-Moon system in the Sun’s gravitational field (Nordvedt
1968a,b). While lunar laser ranging measurements of the Nordvedt effect place
fairly stringent constraints (|η| < 0.0016; see Will 2001 for a review), since εEarth
and εMoon are so small, this test only applies to the weak-field regime. Damour
& Schäfer (1991) proposed a further means to test the SEP by an analagy of
the Nordvedt effect on Galactic neutron star-white dwarf binary systems. In
this case, the external gravitational field is provided by the Galaxy rather than
the Sun and, as shown in Figure 1, for a violation of the SEP polarizes the
eccentricity in the direction of the local gravitational field. Due to the larger
and significantly different self energies of neutron stars and white dwarfs over
solar system bodies, these binaries test the SEP in the strong-field regime.

We shall leave it as an exercise to the interested reader (see Damour & Schäfer
1991 for details) to show that the constraint provided by a binary system is

∆ ≤ 8π2GMeξ(θ)

gc2P 2
b [1− (cos i cosλ+ sin i sinλ sinΩ)2]1/2

. (2)
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Here M is the total mass of the system, e is the orbital eccentricity, Pb is the
orbital period, i is the inclination angle between the plane of the orbit and the
plane of the sky, g is magnitude of the acceleration in the Galactic gravitational
field at the location of the pulsar, λ is the direction between the gravitational
field and the line of sight, Ω is the longitude of the ascending node and the
geometrical factor

ξ(θ) =





1/ sin(θ) for 0 < θ ≤ π/2
1 for π/2 < θ < 3π/2
−1/ sin(θ) for 3π/2 ≤ θ ≤ 2π

(3)

where θ is the angle shown in Figure 1. From equation (2) is is clear that binary
systems with large values of P 2

b /e, i.e., long-period circular orbit systems, are
the best systems for placing limits on ∆. In order for the above equation (3) to
be valid, two conditions must be met:

• The relativistic periastron advance must have completed sufficient revo-
lutions so that its effects on e∆ can be considered to have averaged out.
Following Wex (1997), we may express this in terms of an age constraint:

tsystem > 2× 108 yr

(
Pb

103days

)5/3 ( M

M¯

)−2/3
. (4)

• The relativistic periastron advance must be significantly larger than the
Galactic rotational velocity.

Damour & Schäfer (1991) used two pulsars that satisfied these constraints and
calculated ∆ using a simple Monte Carlo simulation to randomize over the un-
known angles θ and Ω. Their analysis was significantly revised by Wex (1997)
using an ensemble of seven binaries. Wex’s analysis is summarized in Table 1.
For each system, we show the probability of ∆ exceeding a given fractional level
between 1 and 0.2%. In other words, the entries give the probability of the SEP
being violated at the given level. In terms of the simulation, these numbers are
readily calculated by simply recording the number of times ∆ exceeds a given
level and dividing this number by the total number of trials.

Since each binary provides an independent test of the SEP, Wex was able to place
strong constraints by taking the combined probabilities for each system (i.e. the
product of the individual values). The “1 − product” entry listed in the table
gives the combined probability that the SEP is valid at the given fractional level.
From this table, we conclude at the 90% confidence level that ∆ < 0.004. As
smaller limits on ∆ are probed it can be seen that the various binary systems
begin to “drop out” of the joint test when the individual probability reaches
unity. These systems do not constrain the SEP at the level ∆ < 0.002.

3. Two New Long-Period Binary Systems

As discussed throughout this meeting, there are many exciting results emerging
from the flood of binary pulsars discovered in recent years. As far as the SEP
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Pulsar 1.0% 0.5% 0.4% 0.3% 0.2%

J1455−3330 0.18 0.68 1.00 1.00 1.00
J1640+2224 0.23 0.63 0.92 1.00 1.00
J1643−1224 0.27 0.60 0.77 1.00 1.00
J1713+0747 0.08 0.18 0.23 0.39 1.00
B1953+29 0.26 0.56 1.00 1.00 1.00
J2019+2425 0.20 0.45 0.57 0.79 1.00
J2229+2643 0.17 0.76 1.00 1.00 1.00

Product 0.00 0.01 0.09 0.31 1.00
1 − Product 1.00 0.99 0.91 0.69 0.00

Table 1. Results of Wex’s (1997) analysis displayed in a slightly different
form to the original version. For each binary system we display the probability
that ∆ exceeds a given fractional level listed at the top of each column. All
probabilities are given to two decimal places.

Parameter Unit PSR J0407+1607 PSR J2016+1947

Spin period ms 25.7 64.9
Characteristic age Gyr >1 2.5
Orbital period days 669 635
Eccentricity 0.00095 0.00148
P 2
b /e days2 4.7× 108 2.7× 108

Companion mass M¯ 0.19/ sin i 0.29/ sin i

Table 2. Spin and orbital parameters for the two newly-discovered binary
pulsars relevant to the SEP tests. The companion masses are based on the
Keplerian orbital parameters in terms of the unknown orbital inclination i
and assuming a pulsar mass of 1.35M¯.

is concerned, most of these systems do not improve upon Wex’s (1997) analysis
due to either small ages, or more commonly, their low values of P 2

b /e. Two
exceptions, however, are PSRs J0407+1607 and J2016+1947. Both of these
binary pulsars were discovered in 430-MHz Arecibo surveys during the 1990s,
the results of the survey that discovered PSR J2016+1947 have been published
recently (Navarro, Anderson & Freire 2003). Only recently have these pulsars
been observed long enough to accurately determinate their orbital parameters
and to establish that they are old enough to satisfy equation (4) (Lorimer et al.,
in preparation; Freire et al., in preparation).

As can be seen from Table 2, the two new pulsars have very large values of P 2
b /e

and greatly exceed the previous best system J1713+0747 (6 × 107 days2) used
by Wex (1997). We note in passing that both these systems fall on the orbital
period – eccentricity relation predicted by Phinney (1992).
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Pulsar 0.3% 0.2% 0.09% 0.08% 0.05%

J1455−3330 1.00 1.00 1.00 1.00 1.00
J1640+2224 1.00 1.00 1.00 1.00 1.00
J1643−1224 1.00 1.00 1.00 1.00 1.00
J1713+0747 0.39 1.00 1.00 1.00 1.00
B1953+29 1.00 1.00 1.00 1.00 1.00
J2019+2425 0.79 1.00 1.00 1.00 1.00
J2229+2643 1.00 1.00 1.00 1.00 1.00
J0407+1607 0.06 0.09 0.21 0.24 0.46
J2016+1957 0.11 0.17 0.47 0.56 0.92

Product 0.00 0.02 0.10 0.13 0.42
1 − Product 1.00 0.98 0.90 0.87 0.58

Table 3. Preliminary results showing the tests of violations of the SEP
for various fractional values of the parameter ∆. As in Table 1, we list the
products of the individual probabilities for each system.

4. New Limits on the SEP

To demonstrate the level at which the new systems improve the constraints on
∆, in Table 3 we present some preliminary results of a new simulation which
closely follows Wex’s (1997) analysis. As in this earlier analysis we exclude the
long-period binary pulsars B0820+02 and B1800−27 since it is not clear whether
they satisfy the age constraint. For most of the pulsars under consideration, as
expected, there is no contribution to each fractional value of ∆ and the test is
essentially dominated by the two new pulsars for the regime ∆ ≤ 0.0002. As a
firm upper limit, we find ∆ < 0.003. At the 90% confidence level, we conclude
that ∆ < 0.0009. This represents an improvement by a factor of 4.4 over the
previous limits.

5. Implications

The greater self energy of neutron stars and white dwarfs over the Earth and
Moon used in the solar system tests allow us to probe the term of order ε2

in equation (1). Assuming from the lunar laser ranging experiments that η is
negligible in this expression, and ignoring the small self energy contribution from
the white dwarf, we may write

∆ ' ε2NS(ε/2 + ζ), (5)

where the parameters ε and ζ are zero in GR but non-zero in alternative scalar-
tensor theories (e.g., Damour & Esposito-Farese 1995). Assuming that εNS =
0.3, our results place a 90% confidence limit on the sum |ε/2 + ζ| < 0.001.
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