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Abstract. We consider whether the postulated binary black holes in NGC
6752 (Colpi, Possenti, & Gualandris 2002) could be detected from the effect
of their gravitational radiation on the known millisecond pulsars in that clus-
ter. We conclude that the situation in NGC 6752 is not fortuitous for detecting
gravitation waves if only “far-field” gravitational waves are considered. How-
ever, upon investigating the “near-field” we find that the detection probability
dramatically increases for this and other clusters.

1. Introduction

Much attention has been given recently to the possibility of black holes at the
center of globular clusters (GCs). Both Miller & Hamilton (2002) and Portegies
Zwart and McMillan (2000, hereafter PZM00) explain how dynamical interac-
tions in the clusters would leave either 0, 1, or 2 black holes in the clusters, but
the two groups differ on the details and the results. PZM00 show in simulations
that the most likely result is for black holes to form from massive stars, sink
to the center of the cluster, and then for the largest black holes to sling-shot
smaller black holes out of the cluster until only 2 black holes are left. It is very
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difficult to jettison the second to last black hole as it is in a tight binary with
the most massive black hole in the cluster (PZM00).

Miller & Hamilton (2002) on the other hand, show that the second-to-last black
hole will in fact be jettisoned from the cluster, leaving only one black hole.

The question of black holes in GCs is poised, therefore, for observational evidence
of 0, 1, or 2 black holes in GCs. Colpi, Possenti, & Gualandris (2002, hereafter
CPG02) provide observational evidence, albeit circumstantial, that the theory
of PZM00 is correct. CPG02 note that one of the known pulsars in NGC 6752 is
many core-radii away from the core, and show that a black-hole binary (BHB)
in its center would provide the necessary sling-shot to jettison the object out of
the core.

One possible way to study the black hole population in GCs is to use the timing
of the millisecond pulsars in GCs to detect or to place limits on the presence
of BHBs in those GCs. There are about 50 globular cluster millisecond pulsars
(MSPs) known in 16 different globular clusters (d’Amico et al. 2001).

In this article, we present a brief summary of our studies thus far of the feasibility
of detecting BHBs in globular clusters. We begin in §2 by considering the specific
system, NGC 6752, and also discuss general criteria by which a BHB system may
or may not be detectable. We go on in §3 to begin to consider the near-field
effect of the BHB on the pulsar system. In §4 we calculate whether these BHB
systems are in fact, likely to occur in globular clusters. In §5 we present our
conclusions.

2. Estimated Effect in NGC 6752

We calculate here the size of the effect on pulsar timing (in the NGC 6752
pulsars) if in fact NGC 6752 harbors a BHB at its core, with the total mass in
the range 3− 100M¯, the mass range suggested by the CPG02 calculation.

The angular separation between the core and the known pulsars close to the
core (PSRs J1911−5958 B, D, E) is observed to be 0.1, 0.19, and 0.13 arcmin,
respectively (d’Amico et al. 2002). The linear distance to NGC 6752, about
4kpc, was most recently determined using white dwarfs by Renzini et al. (1996).
Thus, the closest pulsar could be as close as 0.1 pc from the core.

In order to calculate the amplitude of gravitational radiation from a circular
binary system we may use equation (2) from Lommen & Backer (2001) which
we reproduce here including a missing factor of c4:

h = 34

(
M1.67

BHBG
1.67

P 0.67
orb d c4

)
q

(1 + q)2
, (1)

where d is the distance from the GW emitter to the pulsar, MBHB is the total
mass of the BHB, Porb is the orbital period of the BHB, and q is its mass ration
(q ≤ 1). We consider a BHB with total mass 10M¯ and we impose an orbital
period of 1/3 year, which gives a semi-major axis of about 1AU. With d = 0.1 pc,
we obtain h = 5.5× 10−18. The perturbation to the timing residuals, δt is given
by δt ∼ hPGW

2π where PGW = Porb/2 (see eq. [3] in Lommen & Backer 2001).
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Thus, δt ' 0.004q/(1 + q)2 ns, undetectable in pulsar timing residuals which
under the most favorable of circumstances have a precision of 0.1µs.

However, we are quite unlikely to find BHBs with circular orbits in the center
of globular clusters, because the binary system would be formed by 3-body
capture rather than by evolutionary processes within an already existing binary
(PZM00).

Naively, one would expect that since a system with high eccentricity emits a
greater amplitude of gravitational wave, that the system would be easier to
detect than the corresponding circular system. However, the amplitude of the
pulsar timing residual is actually diminished because each Fourier component of
the gravitational waveform is divided by its frequency in order to calculate the
residual effect, and the power in the high-eccentricity gravitational waveforms
is in the high-frequency Fourier components. The effect is actually a gradual
decrease in residual amplitude as eccentricity increases.

We have also performed a more careful Monte Carlo simulation by specifically
modeling various waveforms (using Jenet et al. 2004) and determining their
detectability when added to simulated pulsar data. This confirms that the BHB
mass would have to be more than about 6000M¯ in order to be detected. This
number is even higher for higher eccentricity systems. In the next section,
however, we consider the near-field effects of the BHB on the pulsar, and produce
more optimistic results.

3. Near-Field Approximation

Since we are talking about a pulsar 0.1 pc away from a BHB that has an orbital
period of a year (for example) we are actually in the near-field, i.e., less than one
gravitational wavelength away from the gravitational-wave-producing system.

If one considers the multipole expansion of the changing Newtonian gravitational
field, one finds that approximately

Rnf

RGW
≈
(
Porbc

2πr

)3
. (2)

where Rnf is the residual due to the near field, and RGW is the residual due to
the wave approximation. For r = 0.1 pc, MBHB = 100M¯, and Porb = 10 yr,
you get a residual of about 100 ns. Thus, the near field may supply residual
deviations as large as a microsecond, which is certainly detectable. Work is in
progress currently to determine the details of this near-field signature. In the
next section we consider the likelihood of finding a BHB in an arbitrary globular
cluster.

4. The Last Remaining Black Hole Binary

One can estimate the binding energy of a remaining BHB because it must have
been high enough to eject the last single black hole but not so high that it could



228 Lommen et al.

eject itself. Therefore its binding energy is in the range 1000 – 5000 kT where
3/2 kT is the mean stellar kinetic energy in the cluster.

What type of system is this? For example, a binary consisting of two 10M¯

black holes in a zero age cluster with an initial mass of 106M¯ and virial radius
rvir = 3pc (this is a reasonable model of a globular cluster) will be able to
prevent ejection if its orbital separation exceeds 80− 400R¯, assuming a range
of (1− 5) × 103 kT .

This remaining BHB will be hardened further by interactions with other (low-
mass) cluster members and by the emission of gravitational radiation. The rate
of hardening by other cluster members depends on the bulk parameters of the
cluster and for a cluster in virial equilibrium can be written as

d

dt

1

a
= 2πG

ρc
v
. (3)

where a is the orbital separation, ρc is the central mass density, and v is the
relative velocity between the binary and the encountering stars.

To include the effects of hardening by gravitational wave radiation we use the
formalism from Peters (1964) who derived the change in orbital separation for a
binary with two compact objects with masses M1 and M2 (up to fourth order).

da
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= −64
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, (4)

and a similar expression for the evolution of the eccentricity.

The evolution of the BHB after the last single black hole was ejected is driven
by both processes; dynamical hardening and the emission of gravitational waves.
The change in orbital separation can be calculated by solving eq. 3 and eq. 4 in
tandem.

We illustrate the evolution of a binary with two 10M¯ black holes with two
example clusters. For simplicity we ignore the internal evolution of the cluster,
and instead we bracket the range of the cluster parameters for an initial cluster,
and for the cluster as we observe it today.

Figure 1 presents the evolution of the orbital separation for a binary with two
10M¯ black holes. The solid and dashed curves present the calculation for
two different initial conditions: cluster #1 and cluster #2, which are roughly
analogous to ω-Centauri and M15. For cluster #1 (ω-Cen, solid curves) we adopt
parameters which could be representative for cluster at birth; MGC = 106M¯,
Rvir = 3pc and Wo = 6 (Wo is the dimensionless depth of the potential well of
the cluster; see King 1966). For cluster #2 (M15, dashed curves) we adopted a
more evolved model with MGC = 3 × 105M¯, Rvir = 10pc and Wo = 12. The
latter cluster (M15) is in a state of core collapse. The binaries have an initial
orbital separation of 80R¯ and 400R¯, with eccentricity e = 0.7 and e = 0.95.
For cluster #1 we also computed the evolution of a binary with a = 400R¯ and
e = 0.98, but no binaries with a = 80R¯. The various curves in Figure 1 give
the orbital evolution of the binaries in the respective clusters.

Overall, Figure 1 shows that the orbital separation in the more evolved cluster
evolves much faster, i.e., hardens much faster, than that in the zero-age cluster.
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Figure 1. Evolution of the orbital separation from dynamical interactions
and gravitational-wave radiation for various choices of initial binaries and
clusters.

This is to be expected as this much denser cluster produces many more inter-
actions which harden the binary. In general, it appears that non-core-collapsed
clusters are reasonably likely to contain a binary detectable in pulsar timing,
and core-collapsed clusters are not.

5. Conclusion

We plan on continuing our studies of the effect of globular-cluster BHBs on
globular-cluster pulsars using the near-field approximation as it appears that
the effect may be detectable. Globular cluster dynamic studies suggest that
non-core-collapsed clusters are more likely to contain BHBs, and the parameters
of those BHB systems are reasonably well-suited to pulsar studies.
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